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Abstract—Voice activity detection is an essential pre-processing
component for speech-related tasks such as automatic speech
recognition (ASR). Traditional supervised VAD systems obtain
frame-level labels from an ASR pipeline by using, e.g., a Hidden
Markov model. These ASR models are commonly trained on clean
and fully transcribed data, limiting VAD systems to be trained on
clean or synthetically noised datasets. Therefore, a major challenge
for supervised VAD systems is their generalization towards noisy,
real-world data. This work proposes a data-driven teacher-student
approach for VAD, which utilizes vast and unconstrained audio
data for training. Unlike previous approaches, only weak labels
during teacher training are required, enabling the utilization of any
real-world, potentially noisy dataset. Our approach firstly trains a
teacher model on a source dataset (Audioset) using clip-level super-
vision. After training, the teacher provides frame-level guidance
to a student model on an unlabeled, target dataset. A multitude
of student models trained on mid- to large-sized datasets are in-
vestigated (Audioset, Voxceleb, NIST SRE). Our approach is then
respectively evaluated on clean, artificially noised, and real-world
data. We observe significant performance gains in artificially noised
and real-world scenarios. Lastly, we compare our approach against
other unsupervised and supervised VAD methods, demonstrating
our method’s superiority.

Index Terms—Voice activity detection, Speech activity detection.
Weakly supervised learning, Convolutional neural networks,
Teacher-student learning.

I. INTRODUCTION

VOICE activity detection (VAD, or speech activity detec-
tion, SAD) in some literature, whose main objective is

to detect voiced speech segments and distinguish them from
unvoiced ones, is crucial as a pre-processing step for tasks such
as speech recognition and speaker recognition.
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VAD can be performed via either unsupervised feature-based
or supervised model-based approaches. For feature-based VAD,
simple features such as energy [1], [2] and zero-crossing rate [3],
[4] and more complex ones such as the spectral shape [5] and
pitch [6], [7] are investigated. The latter requires speech and
non-speech labels for the training data to build statistical models
that discriminate between speech or non-speech signals [8].
Contrary to supervised frameworks, unsupervised methods do
not require extensive amounts of labeled data. Therefore un-
supervised approaches are cheaper to train and often faster
(due to simpler architecture) than their supervised counterparts.
Unsupervised methods are thus a popular research direction in
VAD [9]–[14].

However, despite the simplicity of unsupervised methods,
they suffer from not scaling well with large amounts of data.
On the other hand, supervised model-based VAD can obtain
better performance when training data size scales up due to a
more accurate estimation of the model parameters.

The choice of backbone models is essential for supervised
VAD approaches. Before the era of deep learning, statistical
models such as the Gaussian mixture model (GMM) [15] and
Hidden Markov model (HMM) [8], [16] are used to model the
distribution of speech and non-speech signals. Deep learning
techniques have contributed to the recent success in VAD [17]–
[22]. Deep neural networks (DNN) [23] and specifically con-
volutional neural networks (CNN) [24], [25] offer improved
modeling capabilities compared to traditional methods [18],
while recurrent- (RNN) and long short-term memory (LSTM)
networks can better model long-term dependencies between
sequential inputs [17], [20], [26], [27]. Lastly, semi-supervised
VAD, which incorporates labeled and unlabeled data, has also
been investigated in [28]. However, despite the recent success
of deep learning models in VAD, supervised frame-level labels
are required for training.

Most methods currently acquire those labels via an automatic
speech recognition (ASR) pipeline, where frame-level speech
activation is estimated via an HMM model trained on tran-
scribed, clean data. Accordingly, the prerequisite includes both
prior knowledge about the spoken language (phonemes) and
clean training data, and therefore, such methods cannot easily
scale with arbitrary data. Thus training data is usually recorded
under a controlled environment with or without additional syn-
thetic noise [27], [29], with work aiming at de-noising [14], [30],
[31]. However, only having access to synthetic noise inevitably
prevents VAD from generalizing to real-world applications,
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where speech in the wild is often accompanied by countless un-
seen sounds, each with its unique features. Moreover, real-world
data is likely to contain copious amounts of spoken language
data mixed with any arbitrary noise, challenging to be used in
traditional supervised VAD frameworks.

Recent work in [32] proposed general-purpose VAD (GP-
VAD), a framework using weak labeled supervision (on clip-
level), as an alternative to common supervised VAD approaches.
However, while the proposed GPVAD framework in [32] outper-
forms strongly supervised VAD when evaluating on real-world
data, GPVAD’s clean and synthetic noise performance is infe-
rior to traditional supervised VAD approaches. We believe the
inferior GPVAD performance stems mainly from two factors:

1) Strongly supervised VAD models have access to frame-
level labels, enhancing their capability to estimate speech
duration.

2) Language/Phonetic unit match between training and eval-
uation datasets (e.g., English).

One possible advantage of GPVAD against traditional su-
pervised VAD methods is that data collection is comparatively
cheap since real-world publicly available datasets can be used,
and only clip-level labels are required. This work aims to address
the two problems stated above by extending the GPVAD frame-
work towards a generalized data setting. We adopt a teacher-
student approach and estimate frame-level labels for the student
model from weakly-labeled teacher training. Therefore, this
study aims to provide insight if VAD models can improve noise
robustness by utilizing large amounts of data without requiring
manual frame-level annotation or exclusively rely on clean data.

The paper is organized as follows: In Section II, we introduce
our method. Further, in Section III, the experimental setup and
training details and evaluation schemes are provided. Then, in
Section IV, our results are provided and analyzed regarding their
noise robustness in VAD. Finally, a summary is provided in
Section V.

II. VAD IN THE WILD

Traditionally, VAD for noisy scenarios is modeled as in 1.
The assumption is that additive noise u can be filtered out from
an observed speech signal x to obtain clean speech s.

x = s+ u (1)

Conventional approaches tackle the problem from a signal pro-
cessing perspective, where the noised signal x is filtered by a
multitude of low- and high-pass filters, as well as other noise
suppression techniques to remove u [2], [7], [33]. However,
VAD systems trained with this framework cannot scale easily
with real-world data since directly modelinguwith various noise
types is difficult. Therefore, we aim at learning the properties of
s accompanied with potentially L different non-speech events
U = (u0,u1, . . . ,uL), where u0 = 0.

X = {x1, . . . ,xl, . . . ,xL}
xl = (s,ul)

(2)

Here, we model our observed speech data X as a “bag,”
containing all co-occurrences of Speech in conjunction with

another, possibly noisy background/foreground event label l ∈
{0, . . . , L} from a set of all possible event labels L < E (2).
Here E is the total number of event labels observed. Since our
approach stems from weakly supervised sound event detection
(WSSED), we do not restrict our approach to only model L
event, and instead, we aim at modeling all E events. This
potentially enhances our model’s robustness since it not only
has access to speech-only data, commonly seen in traditional
VAD approaches but also to data in the wild.

A. Teacher-Student Approach

This work proposes a data-driven teacher-student VAD ap-
proach, which only requires weak clip labels during training.
The approach is based on WSSED, which detects and localizes
different sounds, including speech, via clip-level supervision.
Specifically, the approach estimates from a given input audio-
clip spectrogram S ∈ RT×D with duration T (here number of
frames) and D frequency-bins, a clip-level label y as:

[y1, . . . , yT ] = F (S)

y = Γ [y1, . . . , yT ]
(3)

whereF is modeled via a neural network. Note that the temporal
pooling function Γ, which removes all time-variability, is the
only direct connection between the observed, weakly supervised
signal y and the per-frame estimate yt. Therefore, the estimate
yt is only indirectly learned via back-propagation from the loss
between the prediction y and ground truth ŷ.

Our approach is located within a teacher-student framework,
whereas a teacher T is first trained to estimate y. After training,
T then predicts soft-labels ŷt on a known or unknown dataset,
providing frame-level supervision to a student S . Note that in
our work, the teacher is trained to predict E (here E = 527,
including “Speech” and 526 “non-Speech” events) different
events, whereas the student S is trained as a binary classifier
between speech and non-speech.

Therefore, the soft training labels ŷSt for student S given the
predictions yTt of teacher T are defined as:

ŷSt (Speech) = yTt (Speech)

ŷSt (non-Speech) = max
e �=Speech

yTt (e)
(4)

Since the goal is to best discriminate between speech and non-
speech events, we utilize the maximal value across all events not
labeled as “Speech” (see 4) as the negative class (non-Speech)
representation. For the positive “Speech” class, we use the naive
approach of directly transferring the teacher’s predictions to
the student. Please note that ŷt(Speech) + ŷt(non-Speech) �= 1,
which enables our model to simultaneously predict speech, as
well as possible foreground or background noises. Also, during
inference, we only consider the outputs of yt(Speech) as being
valid and neglect yt(non-Speech).

III. EXPERIMENTS

In this section, we introduce the experimental setup, including
utilized datasets for training and evaluation and insights about
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TABLE I
TRAINING DATASETS FOR TEACHERS (SOURCE) AND STUDENTS (TARGET) AS

WELL AS THE THREE PROPOSED EVALUATION PROTOCOLS FOR CLEAN,
SYNTHETIC NOISE AND REAL-WORLD SCENARIOS. DURATION REPRESENTS

THE OVERALL DURATION OF ANY SIGNAL IN THE CORPUS

the used framework. All neural networks were implemented in
Pytorch [34].

A. Datasets

We first provide details on the training and evaluation datasets.
All datasets’ duration and data condition (clean, real) can be seen
in Table I.

Training Data. It should be noted that since we adopt a
teacher-student approach, the training data utilized in this work
is split into two categories:

1) Source data, which is used to train a teacher model. The
source data is labeled on the clip-level.

2) Target data, which is unlabeled. The teacher is estimating
frame-level soft labels on a target dataset. Then a stu-
dent model is trained from scratch on this dataset and
evaluated.

Source data. In this work, we utilize the publicly available
Audioset [35] dataset for our backbone teacher training. The
commonly available Audioset is split into a “balanced” (further
A1) and an “unbalanced” (further A2) subset. The “balanced”
A1 dataset was collected by first taking examples for the rarest
classes, then moving on to less-rare classes, ultimately leading
to at least 59 examples for each event (but 5000+ for the most
seen “Music” event). The main difference between the A1 and
A2 datasets is the amount of available data. Due to difficulties
obtaining the entire dataset, our A1 subset contains 21 k, andA2

contains 1.85 M at most 10-second long Youtube audio clips.
The data can be considered unconstrained since the dataset is
taken from the globally utilized Youtube platform; thus, param-
eters such as recording devices, environment, data quality are
unknown. Audioset is annotated at clip-level, with 527 possible
event classes, where it should be noted that label noise (e.g., in-
correct labels) is present. Within these 527 events, our focus lies
in the “Speech” class event. The “Speech” event according to the
Audioset ontology contains: “Male speech,” “Female speech,”
“Child speech,” “Conversation,” “Monologue,” “Babbling” and
“Synthesized speech”. Unlike other datasets, Audioset is not
restricted to one specific language, meaning that the teacher
model can be considered language-agnostic.

The A1 subset contains 5452 clips (≈ 15 h), the A2 subset
905 721 (≈ 2500 h) clips labeled as “Speech”. Note that A1

only contains samples, where “Speech” is seen with other events

in tandem (U = (u1, . . . ,uL)), whereas A2 contains single
individual “Speech” only samples (U = (u0,u1, . . . ,uL)). The
amount of events co-occurring with “Speech” in A1 is L = 405,
while for A2 it is L = 498. Therefore, it is likely that training
a teacher on A2 is potentially more noise-robust than on A1.
The most common events co-occurring with “Speech” for each
respective dataset are provided in Fig. 2.

Target data. The target data consists of the two datasets
utilized for teacher training (A1/2), as well as three other
datasets. These three datasets are: Voxceleb1 (V1) [36], Vox-
Celeb2 (V2) [37], [38], as well as V3 which is a combination of
the SRE datasets [39] and Switchboard datasets [40]. V1/2 are
collected from Youtube; thus, data can contain real-world noises
but is likely only to contain spoken language as their primary
sound source. V1 contains about 150 000 audio clips from more
than 1200 speakers. The average length of audios is 8.2 s, and the
whole corpus contains approximately 352 hours of audio. The
collection ofV2 follows the same procedure asV1, but with many
more speakers involved. About 1.13 M audio clips from about
6000 speakers are contained in V2, with an average duration of
7.8 s and a total duration of 2442 hours.

Unlike A1/2 and V1/2, which are collected from open-source
Youtube videos, V3 was carefully planned and constructed by
asking users to record phone calls. V3 consists of a Switchboard
(SWBD) portion and an SRE portion, where the former contains
SWBD phase 2,3 and cellular 1,2, and the latter contains NIST
SRE04-10. V3 is commonly used for the SRE challenges and
contains long-duration recordings, with an average duration of
5 minutes. Overall, V3 contains more than 60 000 recordings,
leading to a total duration of 5213 hours.

Evaluation Data. Three different evaluation scenarios are pro-
posed. First, we validate our model on the clean Aurora 4 test set
(test A) [29]. Test A contains 330 utterances with a total duration
of 40 minutes. Second, we synthesize a noisy test set based on the
clean Aurora 4 test set by randomly adding noise from a database
of 100 noise files encompassing 20 noise types (e.g., Machine,
Crowd, Traffic, Animal, Water, Cry, Laugh, Yawn) using an SNR
ranging from 5db to 15db in steps of 1db (test B). Lastly, we
merge the development and evaluation tracks of the Challenge
on Detection and Classification of Acoustic Scenes and Events
2018 (DCASE18) [41], itself a subset of Audioset, to create our
real-world evaluation data (test C). The DCASE18 data provides
ten domestic environment event labels, of which we neglect all
labels other than “Speech,” but report the number of instances
where non-speech labels were present. The DCASE18 dataset
contains manually re-annotated samples from Audioset, where
similar event labels are generally merged (e.g., “Cat” + “Meow”
from Audioset → “Cat” in DCASE18). An important difference
between DCASE18 and Audioset is that the manually annotated
events in DCASE18 are comparatively noise-free, meaning that
wrong (incorrect) or absent (incomplete) event labels are rarely
seen, whereas Audioset contains label-noise. Our DCASE18
evaluation set encompasses 596 utterances labeled as “Speech,”
414 utterances (69%) contain another non-speech label, 114
utterances (20%) only contain speech, and 68 utterances (11%)
contain two or more non-speech labels. This indicates that the
test set (C) is the most challenging trial compared with (A)
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Fig. 1. The proposed data-driven VAD framework. A convolution block refers to an initial batch normalization, then a 3× 3 convolution, and lastly, a LeakyReLU
(slope −0.1) activation. All convolutions use padding to preserve the input size. The framework consists of three distinct stages: 1. Clip-level training of a teacher
model on source data (Audioset). 2. Using the teacher to estimate soft labels for a student model on a target dataset. 3. Evaluation of the student model by only
keeping the Speech class.

Fig. 2. Top 10 most common “non-Speech” event co-occurring with “Speech”
within A1 (left) and A2 (right) datasets.

and (B). We summarize the differences between the evaluation
dataset as follows.

1) Evaluation sets A and B are annotated using an automatic
HMM alignment, whereas test C is manually annotated
using human-labor.

2) Tests A and B contain exclusively English speech, whereas
test C contains an unknown amount of languages.

3) Test C contains sporadic speech (e.g., random shouts
or greetings), whereas tests A, B only contains well-
pronounced (e.g., news broadcast) sentences in English.

B. Setup

Our VAD experiments used 64-dimensional log-Mel power
spectrograms (LMS) in this work regarding feature extraction.
Every single audio-clip is resampled to 22 050 Hz. Each LMS
sample was extracted by a 2048 point Fourier transform every
20 ms with a window size of 40 ms using a Hann window.

L(ŷ, y) = ŷ log(y) + (1− ŷ) log(1− y) (5)

The training criterion for all experiments between the ground
truth ŷ and prediction y is binary cross-entropy (BCE, see5).
Regarding teacher training, the BCE is computed on clip-level,
while student training computes BCE per frame.

Linear softmax [42], [43] (6) is utilized as temporal pooling
layer (Γ) that merges frame-level probabilities yt(e) ∈ [0, 1] to
a single vector representation y(e) ∈ [0, 1]E .

y(e) =

∑T
t yt(e)

2

∑T
t yt(e)

(6)

Linear softmax is only utilized during teacher training and
removed during student training.

C. Evaluation Metrics

Our models are evaluated on two distinct levels: frame-level
and segment-level. All binary metrics used in this work require:
� True positive (TP): Both reference and system prediction

indicates speech to be present.
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� False positive (FP): System prediction indicates speech to
be present, but the reference indicates non-speech.

� False negative (FN): Reference indicates speech to be
present, but the system prediction indicates non-speech.

Frame-level. For frame-level evaluation, we utilize macro
averaged (instance-independent) precision (P), recall (R), and
their corresponding F1 score. Moreover, we also report the frame
error rate (FER).

P =
TP

TP + FP
,R =

TP
TP + FN

F1 = 2
PR

P + R

FER =
FP + FN

TP + FP + FN + TN

(7)

The threshold-based metrics (P, R, F1, FER) can be seen in
7. Moreover, to compare different approaches with each other,
independent of the post-processing or thresholds used, we also
include Area Under the Curve (AUC) [44]. Note that the com-
putation of AUC is directly done on the estimated speech prob-
ability sequence yt(Speech) ∈ [0, 1].

Segment-level. For segment-level evaluation we utilize event-
based F1-Score (Event-F1) [45], [46]. Event-F1 calculates
whether onset, offset, and the predicted label overlaps with the
ground truth, therefore being a measure for temporal consis-
tency. We set a t-collar value according to WSSED research [41]
to 200 ms to allow an onset prediction tolerance and further per-
mit a duration discrepancy between the reference and prediction
of 20%.

D. Models

Both teacher and student models utilize the same convolu-
tional recurrent neural network (CRNN) back-end. The architec-
ture consists of a five-layer CNN (utilizing 3× 3 convolutions),
summarized into three blocks, with L4-Norm pooling after each
block [32], [43], identical to the CDur framework from [47]. A
bidirectional gated recurrent unit (BGRU) is attached after the
last CNN output, enhancing our models’ temporal consistency.
The framework and specific parameters can be seen in Fig. 1. The
model has 679 k parameters, making it comparably light-weight,
only requiring 2.7 MB on disk.

Teacher model. This work uses two teacher models, T1/2.
T1 represents our baseline teacher approach, only utilizing the
smallerA1 dataset with no augmentation, identical to the CRNN
in [32]. Further, we propose T2, which is trained on the large
A2 dataset, utilizing additional augmentation as seen in Section
III-F (SpecAug, Time shift).

To provide insight into our teacher models’ potential perfor-
mance implications, we evaluated on a subset (≈ 36 h) of the
official Audioset evaluation data. Please note that these results
are computed on clip-level, meaning they have little importance
for frame-level performance and can be viewed as a measure
of our model’s capability to estimate non-speech sound events.
The results in Table II show that the additional training data
for T2 training leads to better outcomes regarding mean aver-
age precision (mAP), AUC, and d-prime (d′) compared to T1.

TABLE II
TEACHER MODELS AND THEIR RESPECTIVE PERFORMANCE ON THE AUDIOSET

EVALUATION DATA. ONLY T2 UTILIZIED AUGMENTATION DURING TRAINING

However, the performance lacks behind large CNN models [35],
[48]–[50]. The main reason for this performance discrepancy is
that our approach aims at modeling speech, which requires a
high time-resolution, ultimately leading to poor clip-level per-
formance. The high time-resolution requirement also partially
hinders our network’s depth and width since our approach can
not arbitrarily diminish the time-dimension. Lastly, since VAD
is a pre-processing step to other tasks, a fast run-time speed is
generally preferred, meaning large models should be avoided.

Student model. The student model is structurally identical to
the teacher model (see Fig. 1). Unlike the teacher model, the
student is trained on the teacher’s frame-level predictions and
does not require the temporal pooling functionΓ. BCE is utilized
as the frame-level loss function (5).

E. Training

Teacher training mainly differs from student training with
its data sampling strategy. We utilize a balanced data sampling
strategy aiming at oversampling minority sound events such that
each batch at best contains a single sample per sound event.
Note since this is a multi-label classification problem, perfect
label balance is impossible since a minority event sample might
also contain a majority event. All student models are trained on
90% of the available training data and cross-validated using the
leftover 10%. Training ofT2 slightly differs from this train/cross-
validation paradigm, in which case we utilize the A1 dataset for
cross-validation. VAD training is done using Adam optimization
with a starting learning rate of 0.001, where the learning rate is
reduced by a factor of 10 if no improvement on the held-out
cross-validation set has been seen for at least 5 cross-validation
steps. The batch-size for all experiments was set to 64. Cross-
validation is done after each epoch or every 5000 batches. For all
utilized datasets, training is run for 15 epochs. The best model
obtaining the lowest loss on the held-out cross-validation dataset
is kept for inference/evaluation. During training, zero-padding
is applied to each audio-clip towards the longest clip’s length
within a batch. Since our student models observe frame-level
labels, we mask our loss such that each padded element does not
influence the final back-propagation step. Code and pretrained
models are available online.1

F. Augmentation

The training utilizes the following data augmentation
schemes.

SpecAug. Recently, a cheap yet effective augmenta-
tion method has been introduced named SpecAugment

1Available at github.com/richermans/datadriven-GPVAD
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(SpecAug) [51]. SpecAug randomly sets time-frequency regions
to zero within an input log-Mel spectrogram. Time modification
is applied by maskingγt timesηt consecutive time frames, where
ηt is chosen to be uniformly distributed between [t0, t0 + ηt0]
and t0 is uniformly distributed within [0, T − ηt). Frequency
modification is applied by masking γf times ηf consecutive
frequency bins [f0, f0 + ηf ), where ηf is randomly chosen from
a uniform distribution in the range of [0, ηf0] and f0 is uniformly
chosen from the range [0, D − ηf ). When using SpecAug, we
set γt = 2, ηt0 = 60, γf = 2, ηf0 = 8. Note that SpecAug is
utilized during teacher (T2) as well as any student training.

Time Shifting. Time shifting is utilized only during teacher
training since it does not affect student training (frame-level
labels). Since only clip-level labels are present, we encourage the
model to learn time-coherent predictions. For each audio-clip,
we draw ηsh from a normal distribution N (0, 10), meaning that
we randomly either shift the audio clip forward or backward by
ηsh frames.

G. Post-Processing

During evaluation, post-processing is required to obtain hard
labels from class-wise probability sequences (yt(e)). We hereby
use double threshold [43], [52] post-processing, which uses
two thresholds φlow = 0.1, φhi = 0.5. Please note that double
thresholding aims to enhance the temporal consistency, therefore
being beneficial in terms of Event-F1.

IV. RESULTS AND ANALYSIS

In this section, we provide our experimental results and insight
into the possible limits of our method. Please note that we
consider FER, Event-F1, and AUC as our primary metrics,
whereas P, R, and F1 are considered secondary metrics.

A. Baseline

Here we first introduce our baseline approaches. First, we
compare our clip-level trained teachers to a frame-level trained
VAD-C (CRNN) model from [32]. The VAD-C model back-end
is identical to our CRNN framework, where only the training
data (Aurora 4) and supervision (frame-level) differ, and ar-
tificial noise is added during training. Therefore, our VAD-C
baseline is an example of a traditional supervised VAD approach
with clean training data.

The results can be seen in Table III. Unsurprisingly, VAD-
C outperforms our proposed clip-level training teachers on the
clean (A) and synthetic (B) test sets. However, the difference
in performance between our teachers and VAD-C is acceptable
since our approach has no strong frame-level supervision.

Leveraging large-data (A2) for T2 shows promising perfor-
mance against T1 when noise is present. In real-world scenarios
(test C), both T1 and T2 significantly outperform the standard
VAD model on all shown metrics. Specifically, we observe a
significant drop in FER (21.92 → 12.74) and an increase in
AUC (87.87 → 94.58). Further, note that performance is less
affected by noise (compare results B and C), indicating noise
robustness for both our teacher models.

TABLE III
A BASELINE COMPARISON BETWEEN TRADITIONAL SUPERVISED (CRNN)

VAD-C APPROACH TRAINED ON AURORA 4 IN A FRAME-SUPERVISED MANNER

TO OUR PROPOSED TEACHER MODELS

TABLE IV
RESULTS USING TEACHER T1 AND STUDENT MODEL TRAINED ON A1 USING

DIFFERENT LABEL TYPES. WE COMPARE THE TEACHER T1 BASELINE USING

CLIP-LEVEL TRAINING TO THE STUDENT MODELS. BEST RESULTS ARE

HIGHLIGHTED IN BOLD

B. Difference in Label Types

Naturally, since the teacher model outputs probabilities (soft
labels), an interesting topic of investigation is if hard labels
(zero-one) are helpful during training. We believe that both
soft- and hard-label approaches mutually benefit each other. We
assume that hard labels are possibly beneficial to detect onset-
and offset boundaries. In contrast, soft labels can more effec-
tively provide duration estimates since speech to non-speech
transitions are smooth. We conduct two experiments, using each
respective teacher model T1/2. Three types of labels are utilized:
� Soft labels, i.e., probabilities, ŷSt ∈ [0, 1] (soft).
� Hard labels obtained from thresholding all soft labels with
φ = 0.5, ŷSt ∈ {0, 1} (hard).

� Randomly (hard) thresholding at most 25% of the speech
samples within an audio-clip using φ = 0.5 (dynamic).
Note that during our model selection phase, we investigated
the thresholds 10%, 25%, 50%, and came to the conclusion
that 25% works best.

Our initial results using the baseline teacher T1, and student
model trained on A1 can be seen in Table IV. Here, we compare
the students trained on frame-level using the three proposed label
types against the clip-level teacher T1. First and foremost, it can
be seen that our proposed teacher-student approach improves
performance in all test scenarios (A, B, C) against the teacher T1
(clip). For example, the AUC from T1 increases on test A (99.07
→ 99.31), B (94.63 → 96.70) and C (91.80 → 93.12) when
using teacher-student training. Second, our results indicate that
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TABLE V
RESULTS USING TEACHER T2 AND STUDENT MODEL TRAINED ON A1 USING

DIFFERENT LABEL TYPES. WE COMPARE THE TEACHER T2 BASELINE USING

CLIP-LEVEL TRAINING TO THE STUDENT MODELS. BEST RESULT PER TEST IN

BOLD

hard-label training is preferred in clean data scenarios to obtain
consistent temporal predictions. Here, the hard-label approach
on the test set A improves the Event-F1 score from 73.70 to
76.34. This observation seems to be in line with our baseline
VAD-C method, which is also trained on hard-labels, as it is
common for traditional VAD approaches.

Further, we also provide our results using teacher T2 in Ta-
ble V. Student models are also trained on A1. The performance
increase from using the more potent teacher T2 is evident in
the noisy test cases (B, C). All frame-level and segment-level
metrics improve significantly compared to the teacher model,
e.g., on test B, FER 10.58 → 7.08 and Event-F1 42.50 → 57.78.
Moreover, while both teachers perform worse than our baseline
VAD-C approach on test B, the students of teacher T2 now out-
perform VAD-C in both B and C noisy test-conditions regarding
AUC, FER, and Event-F1. Different from the previous observa-
tions in Table IV, it seems that our dynamic labeling method
is consistently superior to soft and hard-label approaches for
test B and C in regards to FER and F1. Lastly, our performance
gap across the synthetic trial B and real noise trial C scenarios
is significantly less than the VAD-C baseline. Notably, on all
tested conditions, our AUC is higher than 95, indicating our
approach’s noise robustness. Due to the results in Table V, all
further experiments utilize by default teacher T2 and use the
dynamic label-scheme (for further information, see Section VII).

C. Teacher-Student VAD Using Unlabeled Out-of-Domain
Data

One of our approach’s significant advantages is that it can
potentially scale to other, out-of-domain datasets. Since the
teachers are trained on real-world data, they can provide frame-
level supervision on any dataset without being constrained to
any specific data type (clean, real) or other conditions such as
language. So far, our work utilized Audioset (A1) to achieve
substantial improvements in noisy environments but slightly lag
behind the clean test A. This performance gap could stem from
the large amount of non-speech events within Audioset. We
hypothesize that adding data that mainly contains speech (e.g.,

TABLE VI
STUDENT TRAINING USING THE LARGELY SPEECH-ONLY DATASET V1 IN

CONJUNCTION WITH THE NOISY A1. TEACHER T2 IS UTILIZED TO PREDICT

DYNAMIC LABELS ON EACH RESPECTIVE DATASET

TABLE VII
LARGE DATA TRAINING ON LABELS GENERATED FROM TEACHER T2 FOR

EACH RESPECTIVE DATASET USING THE DYNAMIC LABELING SCHEME. OUR

BEST (MOST NOISE ROBUST ACROSS NOISY EVALUATION SCENARIOS) MODEL

IS HIGHLIGHTED IN BOLD

V1) might be beneficial. Thus, this experiment mainly focuses
on comparing V1 and A1 as target datasets.

Our results in Table VI show that our approach can achieve
competitive performance even when trained on other datasets
(hereV1). Performance on the clean (A) test set improves against
the T2 baseline. We believe that the performance improvement
in our (B) evaluation dataset stems from the possible language
match (English) when training (V1). Interestingly, by training
on clean datasets (V1), performance in noisy test scenarios does
not drop compared to real-world datasets (A1, see Table V). We
assume that this is due to the teacher’s noise-robust soft labels,
indicating a knowledge transfer from teacher to student. Adding
real-world data to clean data (e.g., V1 +A1) seems to perform
worse on the test set C than training on both datasets individually.

D. Scaling With Large Data

As it has been already seen in Section IV-A and Section IV-B,
results of T2 substantially outperform results from T1, likely
being due to the inherently much larger data size for teacher
training. We further investigate the implications of large target
data utilization (A2,V2, V3) for student training.

Our results in Table VII demonstrate that our teacher-student
approach can scale with data. Our method can also be extended
to any dataset, while some differences are notable between
different target data.
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Fig. 3. Receiver operating characteristic (ROC) curves for the Aurora 4 Noisy
(B) and DCASE18 evaluation sets. The teacher T2 is compared to its students
V2,A2,V2 +A2,V3. Best viewed in color.

The best performing model we have observed is trained on
the V3 dataset since it achieved the lowest FER (3.06), as well
as the highest Event-F1 (74.80) of any proposed teacher-student
approaches, on the clean test A scenario. More importantly, on
both noisy tests (B, C), this model outperforms other models
trained on V1/2 data, as well as A2. Most importantly, this
model achieves the highest performance on our difficult C trial.
Compared to our strong teacher T2 baseline, we observe an
absolute decrease in FER by 3.9%, an increase in AUC by 2.41,
and an increase in Event-F1 by 11.95% on test B. While a relative
improvement on test C is less than on test B (likely due to harder
difficulty), the model still manages to decrease FER by 1.92%,
increase AUC by 0.68, and Event-F1 by 11.55%. All metrics are
reported in absolute.

Lastly, we also provide the receiver operating characteristic
(ROC) curves for the results in Table VII in Fig. 3. Specifically,
the ROC curves for the teacher T2 and its students are displayed.
We limit our visualization to tests B and C since the performance
on those tests differs the most.

TABLE VIII
COMPARISON OF THE 2400 HOUR LONG V2 DATA AGAINST THE SUBSAMPLED

V3 (2.4 K). BEST RESULTS FOR THE HARD C TRIAL ARE HIGHLIGHTED IN

BOLD

E. Data Size Vs. Target Data Characteristics

Another essential question worth investigating is whether
the previous results of the V3 model stems exclusively from
the increased data size compared to V2 or if the reason is the
characteristics of the V3 dataset. For this reason, we subsampled
the previously used V3 dataset to be of equal size to the V2

dataset, i.e., around 2400 hours. Then, we trained a new teacher
(V3 (2.4 k)) on this subset, and the results can be observed in
Table VIII.

From the results, it can be noted that:
1) The new V3 (2.4 k) model performs well against the other

approaches on the clean test A and obtains the highest
Event-F1, AUC, and Recall results.

2) Both V3 and V3 (2.4 k) outperform V2 on test C.
We conclude from these results that the dataset’s size for

student training is less important than its characteristics. Com-
paring the results using medium-sized datasets in Table VI to
the large scale ones in Table VIII leads to the conclusion that,
while larger datasets possibly contain more content-rich data,
the performance benefits are marginal. Instead, our approach
seems to be well suited for cross-domain adaptation.

F. Performance Under Different SNRs

Here we further analyze the performance of our approach
under synthetic noise scenarios. A new noise-controlled test set
is generated by mixing the clean audio from the test set A by
noise from Musan [53] in a range between 20 to -5 dB SNR (in
steps of 5 dB). Musan contains three categories of noise: speech,
music, and background noise. For each sample in the test set A,
we independently add speech, music, and background noise,
resulting in a test set three times the size of A for each SNR
value.

As the results indicate in Table IX, our proposed approach
is robust to noise, capable of providing adequate performance
(FER 12.30, Event-F1 36.75) in noisy SNR = 0db scenarios.
However, it seems that our model’s performance severely de-
grades even in light noise conditions (SNR = 20db). We hy-
pothesize that this increase stems from the additive speech noise,
which would inevitably lead to our VAD’s false activations. We
provide insight into our approach’s limits via visualization of our
models’ probabilities for a comparatively hard sample, where
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Fig. 4. Our best model (V3) predicting speech under different SNRs ranging from -5 (A) to 20 (F) db in steps of 5db. Each plot title is a respective sample name
from the Aurora4 dataset. Each graph represents a log-Mel spectrogram (top), ground truth (center) and probability output (bottom). Noise is exclusively music.

Fig. 5. Our best model (V3) predicting speech under different SNRs ranging from -5 (A) to 20 (F) db in steps of 5db. Each plot title is a respective sample name
from the Aurora4 dataset. Each graph represents a log-Mel spectrogram (top), ground truth (center) and probability output (bottom). Noise is exclusively speech.

TABLE IX
OUR BEST MODEL (V3) EVALUATED ON THE AURORA 4 CORPUS WITH

ADDITIVE NOISE (MUSIC, SPEECH, BACKGROUND) FROM MUSAN

speech occurred six times in a span of 12 s. Here the individual
samples utilizing music (Fig. 4), speech (Fig. 5), and background
noise (Fig. 6) can be observed.

First, as it can be seen in Fig. 4, our approach excels at noisy
background scenarios such as music. For SNR values of >5db,
it can be observed that the model is capable of effectively pre-
dicting speech boundaries and the presence of speech. Notably,

with high SNR values, the AUC of our approach can reach up to
95%, which in turn decreases with a decrease in SNR. However,
for the hard SNR = -5 case, our approach, even though capable
of sensing speech, does only output probabilities below 50%,
meaning that a change in post-processing would be useful (e.g.,
lower threshold).

Second, when faced with additional speech in Fig. 5, our ap-
proach’s potential drawbacks are observed. Our model now con-
sistently outputs with high confidence in the presence of speech.
The prediction patterns produced appear to be very similar,
regardless of SNR. Even at SNR = 20, speech is predicted with
high confidence throughout the entire utterance, indicating our
model’s high sensitivity towards speech. This high sensitivity
attests that our method is fully capable of detecting the presence
of any speech. However, it currently cannot distinguish between,
e.g., multiple speakers or different sound sources. However,
since our work can be easily extended with speaker-dependent
VAD approaches, future work can focus on utilizing methods
such as [54].
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Fig. 6. Our best model (V3) predicting speech under different SNRs ranging from -5 (A) to 20 (F) db in steps of 5db. Each plot title is a respective sample
name from the Aurora4 dataset. Each graph represents a log-Mel spectrogram (top), ground truth (center) and probability output (bottom). Noise is exclusively
background noises.

Third, when confronted with common background noises in
Fig. 6, our approach shows little to no influence even under
heavy noise (SNR = -5) scenarios, indicated by high probability
values. For all samples, it can also be seen that our model excels
at estimating short, spontaneous bursts of speech, with accurate
onset and offset prediction capabilities.

G. Comparison With Other Approaches

To prove our approach’s effectiveness and the difficulty of
VAD in real-world scenarios, we compare our results with
previous successful frameworks. Note that we use the default
configuration of each proposed method. Thus input feature-types
(i.e., MFCC) and hyper-parameters (i.e., frameshift) for all other
approaches differ from ours. Further, all other approaches were
not retrained on our Aurora4 dataset and taken as-is from their
respective public repository. First, we compare our method to the
naive energy-thresholding method used in the Kaldi [2] toolkit.
Second, we utilize rVAD [7] (the rVAD-fast implementation),
an unsupervised VAD approach, which has been seen to perform
well in the presence of substantial noise. Third, we also compare
to traditional supervised VAD approaches using deep neural
networks (DNN) from [23]. Lastly, we compare against a more
modern attention-based approach (ACAM) [20]. Note that our
goal in this comparison is to show that previous approaches
trained on their respective dataset cannot generalize to unseen
noise types. However, back-end models such as ACAM could
be used in the future in conjunction with our proposed GPVAD
approach to enhance performance further. Additionally, since all
other competitors’ outputs are hard labels yt ∈ 0, 1, we refrain
from calculating the AUC score, denoted as “–”.

The results in Table X show that our chosen VAD-C baseline
is indeed more potent than other approaches on clean data.
Standard Kaldi energy-thresholding offers a comparatively well-
rounded performance on test A in terms of FER (6.48) and F1
(91.93) while profoundly lacking temporal consistency (Event-
F1 2.30). However, when noise increases (B, C), the naive Kaldi

TABLE X
COMPARISON BETWEEN TRADITIONAL ENERGY (KALDI), UNSUPERVISED

(RVAD), SUPERVISED (DNN, ACAM) AND OUR BASELINE (VAD-C)
APPROACHES TO OUR STUDENT MODEL TRAINED ON V3 (OURS). BEST

ACHIEVED RESULT PER TEST IS HIGHLIGHTED IN BOLD

approach degenerates to random guessing levels (FER 55.30, F1
35.88). Further, we observe that rVAD performs well in clean
and synthetic noise scenarios, as seen in its original work [7].
However, when faced with real-world, unconstrained evaluation,
its performance decreases significantly on test C. Our proposed
method shows signs of noise robustness between trials B and C,
obtaining a lower FER and higher F1 in test C than rVAD does in
test B. Traditional supervised VAD models, only using a shallow
2-layer DNN structure from [23] are unable to perform well even
against the unsupervised rVAD approach. Also, more modern
attention-based approaches from [20] are seen to perform better
than the traditional shallow DNN model. However, both super-
vised approaches perform consistently worse than our VAD-C
baseline, suggesting that our model architecture (CRNN) is
indeed suited for supervised VAD. In this comparison, it can be
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TABLE XI
SENSITIVITY IN REGARDS OF Pfa AND Pmiss AS WELL AS FER ON THE TEST

C. HERE DEFAULT REPRESENTS DOUBLE THRESHOLDING WITH

φlow = 0.1, φhi = 0.5

seen that our method is the best performing in noisy scenarios.
More importantly, its performance across multiple test scenarios
is also the most stable (e.g., FER increases from 3.06 in test A
to 10.82 in test C, and AUC drops from 98.66 to 95.20).

We also visualize some sample predictions on trial C in Fig. 7
between all used models. Note that since the test C labels
are human-annotated, incorrect labeling can occur (e.g., short
pauses are not considered). Compared to other approaches, the
visualizations demonstrate our model’s superiority in terms of
FER since it is rarely seen to mispredict speech activity. Onsets
(start of speech) and offsets (end of speech) are well estimated,
even though our approach never had access to strong supervision
(as the other comparable supervised models), thus needed to
learn duration estimation by itself. However, our model is also
seen to miss out on predicting speech activity, which leads us to
investigate its sensitivity.

H. Sensitivity

Here we study the post-processing impact on our model’s
sensitivity. As per default, we used double thresholding (see
Section III-G), which can be seen as a conservative post-
processing method. For this experiment, we remove double
thresholding as post-processing method and replace it with
traditional thresholding ySt (Speech) > φ, where we investigate
φ ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.7}.

Here, False alarm rate (Pfa) is the percentage of “non-
Speech” frames being mis-classified as “Speech” and (Pmiss)
is the percentage of “Speech” frames being misclassified as
“non-Speech”. We compare our findings with other methods
from Table X, utilizing their respective default configuration.
The results can be seen in Table XI, reflecting our previous find-
ings regarding our method’s noise robustness. If a low threshold
0.01 is used to reduce Pmiss to as low as 3.36%, the percentage
of false accepts Pfa still outperforms all other comparable
approaches. Also, note that for all investigated thresholds, our
highest reported FER (20.58%) remains lower compared to other
approaches (see Table XI).

Fig. 7. Eight sample predictions of our best student model (V3) using default
post-processing against previous methods on test C. For each graph: (Top) LMS.
(Center) Ground truth label. (Bottom) speech presence predictions in color for
each respective model. Each plot title is a respective sample from the DCASE18
dataset (formatted as Y[Youtubeid_start_end]). Viewers are encouraged to visit
each respective Youtube link for a better experience.
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TABLE XII
PERFORMANCE DIFFERENCE BETWEEN SOFT AND DYNAMIC (DYN) LABELS ON TARGET DATA

V. CONCLUSION

This work proposes and investigates a novel data-driven
teacher-student approach for voice activity detection to be
trained with vast amounts of data. A teacher model is firstly
trained using clip-wise labels on Audioset. Then the teacher is
used to predict probabilities (soft-labels) for a student model. In
our initial results, we show that teacher-student training on both
source datasets (A1/2) significantly benefits VAD performance
in noisy test conditions. Further, we investigate the influence
of soft, hard, and dynamic labels on performance. Our proposed
dynamic approach is seen to outperform both soft and hard label
training in noisy scenarios. Out-of-domain large data student
training is also investigated, utilizing the Voxceleb 1/2 datasets
as well as NIST SRE. Our best student model significantly out-
performs our supervised VAD-C baseline as well as our teachers
(T1/2) on all noisy evaluation scenarios regarding FER, F1,
AUC, and Event-F1 metrics. Notably, Event-F1 scores of over
50% are reported across all test cases, meaning that our model
excels at segmentation by providing accurate speech on- and
offsets. When comparing our method to traditional supervised
and unsupervised approaches, noise robustness is observed in
the difficult C trial. The noise robustness is validated by our
model’s performance in the MUSAN corrupted A trial for low
SNRs. Moreover, our model is sensitive to any speech, which
could hinder its performance under speech-heavy scenarios.
Lastly, we observe only little performance improvements when
utilizing large data, most likely due to our model’s small size,
meaning that our future work would aim to improve the depth
and complexity of our teacher/student models to utilize available
data better.

APPENDIX SOFT VS. DYNAMIC LABELS

In this paper, we utilized our dynamic method as the de-
fault label method without adequately providing results for
V1,A1 target datasets. In Table XII these missing results can
be seen. Even though dynamic labels do not always provide
better performance (e.g., on the clean A test set), a significant

difference in terms of FER and Event-F1 can be seen between
B and C test sets. It seems that dynamic labels are much less
prone to overfitting and are more capable to robustly estimate
sound-event boundaries, evident by a similar Event-F1 score in
tests B and C. All provided results on the C test set consistently
obtain an Event-F1 score of over 50%, while their soft-label
counterparts consistently obtain 40%.
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