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Towards Duration Robust Weakly Supervised Sound
Event Detection

Heinrich Dinkel

Abstract—Sound event detection (SED) is the task of tagging
the absence or presence of audio events and their corresponding
interval within a given audio clip. While SED can be done using
supervised machine learning, where training data is fully labeled
with access to per event timestamps and duration, our work fo-
cuses on weakly-supervised sound event detection (WSSED), where
prior knowledge about an event’s duration is unavailable. Recent
research within the field focuses on improving segment- and event-
level localization performance for specific datasets regarding spe-
cific evaluation metrics. Specifically, well-performing event-level
localization requires fully labeled development subsets to obtain
event duration estimates, which significantly benefits localization
performance. Moreover, well-performing segment-level localiza-
tion models output predictions at a coarse-scale (e.g., 1 second), hin-
dering their deployment on datasets containing very short events
(< 1second). This work proposes a duration robust CRNN (CDur)
framework, which aims to achieve competitive performance in
terms of segment- and event-level localization. This paper proposes
a new post-processing strategy named “Triple Threshold” and
investigates two data augmentation methods along with a label
smoothing method within the scope of WSSED. Evaluation of our
model is done on the DCASE2017 and 2018 Task 4 datasets, and
URBAN-SED. Our model outperforms other approaches on the
DCASE2018 and URBAN-SED datasets without requiring prior
duration knowledge. In particular, our model is capable of similar
performance to strongly-labeled supervised models on the URBAN-
SED dataset. Lastly, ablation experiments to reveal that without
post-processing, our model’s localization performance drop is sig-
nificantly lower compared with other approaches.

Index Terms—Weakly supervised sound event detection,
convolutional neural networks, recurrent neural networks,
semisupervised duration estimation.

1. INTRODUCTION

OUND event detection (SED) research classifies and lo-
calizes particular audio events (e.g., dog barking, alarm
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ringing) within an audio clip, assigning each event a label along
with a start point (onset) and an endpoint (offset). Label assign-
ment is usually referred to as tagging, while the onset/offset
detection is referred to as localization. SED can be used for
query-based sound retrieval [1], smart cities, and homes [2],
[3], as well as voice activity detection [4]. Unlike common
classification tasks such as image or speaker recognition, a single
audio clip might contain multiple different sound events (multi-
output), sometimes occurring simultaneously (multi-label). In
particular, the localization task escalates the difficulty within
the scope of SED, since different sound events have various time
lengths, and each occurrence is unique. Two main approaches
exist to train an effective localization model: Fully supervised
SED and weakly supervised SED (WSSED). Fully supervised
approaches, which potentially perform better than weakly su-
pervised ones, require manual time-stamp labeling. However,
manual labeling is a significant hindrance for scaling to large
datasets due to the expensive labor cost. This paper primarily
focuses on WSSED, which only has access to clip event labels
during training yet requires to predict onsets and offsets at the
inference stage.

Challenges such as the Detection and Classification of Acous-
tic Scenes and Events (DCASE) exemplify the difficulties in
training robust SED systems. DCASE challenge datasets are
real-world recordings (e.g., audio with no quality control and
lossy compression), thus containing unknown noises and sce-
narios. Specifically, in each challenge since 2017, at least one
task was primarily concerned with WSSED. Most previous work
focuses on providing single target task-specific solutions for
WSSED on either tagging-, segment- or event-level. Tagging-
level solutions are often capable of localizing event bound-
aries, yet their temporal consistency is subpar to segment- and
event-level methods. This has been seen during the DCASE2017
challenge, where no single model could win both tagging and
localization subtasks. Solutions optimized for segment level
often utilize a fixed target time resolution (e.g., 1 Hz), inhibiting
fine-scale localization performance (e.g., 50 Hz). Lastly, suc-
cessful event-level solutions require prior knowledge about each
events’ duration to obtain temporally consistent predictions.
Previous work in [5] showed that successful models such as the
DCASE2018 task 4 winner are biased towards predicting tags
from long-duration clips, which might limit themselves from
generalizing towards different datasets (e.g., deploy the same
model on a new dataset) since new datasets possibly contain
short or unknown duration events. In contrast, we aim to en-
hance WSSED performance, specifically in duration estimation
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regarding short, abrupt events, without a pre-estimation of each
respective event’s individual weight.

II. RELATED WORK

Most current approaches within SED and WSSED utilize
neural networks, in particular convolutional neural networks [6],
[7] (CNN) and convolutional recurrent neural networks [4], [5]
(CRNN). CNN models generally excel at audio tagging [8], [9]
and scale with data, yet falling behind CRNN approaches in
onset and offset estimations [10].

Apart from different modeling methods, many recent works
propose other approaches for the localization conundrum. A
plethora of temporal pooling strategies are proposed, aiming to
summarize frame-level beliefs into a single clip-wise probabil-
ity. McFee et al. [7] analyzes the common problem of temporal
mean and max pooling for WSSED, indicating that temporal
max-pooling preserves event boundaries well; however, it can
only backpropagate a single weight. Therefore, [7] proposed
soft-max pooling, an interpolation between mean and max pool-
ing, as well as AutoPool, which is a per-event weighted soft-max
pooling approach. Subsequent work from Wang et al. [11] ex-
tends the idea of [ 7] and compares other similar pooling methods
such as attention to two newly proposed approaches, namely lin-
ear and exponential softmax. Their results on the DCASE2017
task4 dataset indicate that linear softmax could be potentially
superior to attention and max-pooling methods in terms of false
positives. By contrast, recent work in [12] reports that temporal
max-pooling seems to be advantageous in rare sound event
scenarios. However, though different pooling strategies have
been proposed, the correlation between the pooling methods and
the classifier backends might be under investigation. Attention
level pooling methods seem to be preferred for models without
sequential model capabilities [6], [13] (e.g., CNN), whereas max
and linear softmax pooling functions have seen success in CRNN
frameworks [5], [11].

In addition to pooling strategies, a recent popular approach in
dealing with different duration lengths is disentanglement. Lin et
al. [6] presents impressive results on the DCASE2018 task 4 and
DCASE]19 task 4 datasets, achieving 38.6% and 42.7% Event-
F1, respectively, by estimating an individual weight sequence
for each individual sound event. Moreover, it is indicated that
feature-level aggregation methods (e.g., hidden layer) should be
preferred over event-level methods (e.g., output layer). Recent
work in [13] proposes multi-branch learning, similar to multi-
task learning, which utilizes a multitude of temporal pooling
strategies in order to prevent overfitting towards a single method.
Similar methods regarding disentanglement are spectral event-
specific masking, as introduced in [14]. The main idea is to
estimate time-frequency masks via a CNN regarding a target
sound event. The advantage of this method is that it can jointly
localize as well as filter audio clips.

Lastly, another research category within the field focuses on
constructing frame-level losses during training. An example of
such amethodis [15], which introduces a cosine penalty between
different time-event predictions, aiming to enhance the per time
step discriminability of each event. This idea is similar to large

margin softmax (L-softmax) [16] and has resulted in an F1 score
of 32.42% on the DCASE2018 task4 development dataset.

The success of approaches such as [6], [17], [18] relies on
prior knowledge about event-wise duration or a target resolution.
These methods, in turn, have the following downsides: 1) They
are costly since manual labor is required for time-stamp labeling
and 2) they rely on consistent duration labeling for each event
between available development and unseen evaluation sets, as
well as 3) become near impossible to estimate for large quantities
of event labels and lastly 4) can only be used for their specific
purpose, e.g., tagging, event-level or 1 s segment estimation.
Besides, previously introduced models [6], [17], [18], which
excel on a specific dataset, have yet to be shown to work on
others successfully.

Contribution: In our work, we modify and extend the frame-
work of [5] further towards other datasets and aim to analyze
the benefits and the limits of duration robust training. Our main
goal with this work is to bridge the gap between real-world
SED and research models and facilitate a common framework
that works well on both tagging and localization-level without
utilizing dataset-specific knowledge. Our contributions are:

® A new, lightweight, model architecture for WSSED using
L4-norm temporal subsampling.

® A novel thresholding technique named triple threshold,
bridging the gap between tagging and localization perfor-
mance.

e Verification of our proposed approach across three publicly
available datasets, without the requirement of manually
optimizing towards dataset-specific hyperparameters.

This paper is organized as follows: in Section III, we state our
approach using a CRNN framework for duration robust sound
event detection. Further, in Section IV, the experimental setup is
described, including our evaluation metrics. Then in Section V
we provide our results and compare our approach to other
models. Additionally, we include an ablation in Section VI study,
which aims to display the duration stability of our model and
investigate our model’s limitations. Lastly, the paper culminates
in Section VII, where a conclusion is drawn.

III. APPROACH

Contrary to supervised learning approaches, where a (strong)
one-to-one correspondence between an instance x; (here au-
dio frame) and a label §; exists, WSSED is labeled as a
(weak) many-to-one relationship. WSSED aims to distinguish
between multiple events in an audio clip (multi-class), as well
as separate apart co-occurring events (multi-label) at a time.
In particular, during training only an entire frame-level feature
sequence [x1,xs,...] has access to a single, clip-level label
g(e) € {0,1},e € [1,..., E], where e represents each individ-
ual event. This scenario, in its essence, is multiple instance
learning (MIL) [19].

It should be evident that within WSSED, localizing an event is
much more complicated than tagging, since for tagging, training
and evaluation criteria match, while for localization, important
information such as duration is missing, meaning that a model
needs to “learn” this information without guidance. Due to this
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Fig. 1. Basic WSSED framework used in our work. During training only
the aggregated per event probabilities are learned via LinSoft, while during
inference additional per event time-stamps need to be estimated and enhanced
via post-processing.

TABLE I
THE CDUR ARCHITECTURE USED IN THIS WORK. ONE BLOCK REFERS TO AN
INITIAL BATCH NORMALIZATION, THEN A CONVOLUTION, AND LASTLY, A
LEAKYRELU (SLOPE -0.1) ACTIVATION. ALL CONVOLUTIONS USE PADDING IN
ORDER TO PRESERVE THE INPUT SIZE. THE NOTATION ¢ 1 / |, d REPRESENTS
UP/DOWN-SAMPLING TIME DIMENSION BY ¢ AND THE FREQUENCY DIMENSION
BY d. THE MODEL HAS TWO OUTPUTS: ONE CLIP-LEVEL, WHICH CAN BE
UPDATED DURING TRAINING, AND ONE FRAME-LEVEL USED FOR EVALUATION

Layer | Parameter
Block1 32 Channel, 3 x 3 Kernel
L4-Sub 214
Block2 128 Channel, 3 x 3 Kernel
Block3 128 Channel, 3 x 3 Kernel
L4-Sub 214
Block4 128 Channel, 3 x 3 Kernel
Block5 128 Channel, 3 x 3 Kernel
L4-Sub 114
Dropout 30%
BiGRU 128 Units
Linear FE Units

LinSoft | Upsample 4 1 1
Output Clip-level Frame-level

mismatch between training and evaluation, post-processing is
vital to improve performance [5]. The main idea in our work
extends to the notion of duration robustness [5]. We refer to
duration robustness as the capability to precisely tag and, more
importantly, estimate on- and off-sets of the aforementioned
tagged event. A duration robust model should also be capable
of predicting on- and off-sets for both short and long duration
events.

Our approach’s framework can be seen in Fig. 1, where
the backbone CRNN with temporal pooling and subsampling
layers learns clip-level event probabilities during training. For
inference, we propose triple thresholding to enhance the duration
robustness.

Our proposed model, which we further refer to as CDur
(CRNN duration, see Table I), consists of a five-layer CNN
followed by a Gated Recurrent Unit (GRU). The model is based
on the results in [5], yet it is modified to enhance performance
further. Specifically, CDur utilizes double convolution blocks
and three subsampling stages instead of five. Moreover, our
model experiences substantial gains by utilizing a batch-norm,
convolution, activation block structure, especially when paired

with Leaky rectified linear unit (LeakyReLU). The abstract
representations extracted by the CNN front-end are then pro-
cessed by a bidirectional GRU with 128 hidden units.

A. Temporal Subsampling

We propose the use of subsampling towards practical, gen-
eralized sound event detection, based on the following three
reasons: 1) Subsampling discourages disjoint predictions, e.g.,
short (frame), consecutive zero-one outputs [0,1,0,1,...] —
[0,0,0,0,...].2) Reduces the number of time-steps a recurrent
neural network (RNN) needs to remember; therefore, it is similar
to a chunking mechanism [20], which summarizes parts of a
time-sequence. 3) By subsampling in the time-frequency domain
via L-norm pooling, abstract time-frequency representations can
be learned by the model.

Please note that, in essence, subsampling and pooling are
identical operations. In our work, the term subsampling refers
to intermediate operations within a local kernel (i.e., 2 x 2)
on a spectrogram’s time-frequency domain. In contrast, pooling
refers to reducing a time variable signal to a single value (i.e.,
500 probabilities — 1 probability).

Subsampling is commonly done using average or max op-
erators. However, previous work in [5] showed that L-norm
subsampling largely benefits duration robustness, specifically
enabling the detection of short, sporadic events. L-norm sub-
sampling within a local kernel with size K is defined as:

Dok
zeK

where, L,, reduces to mean subsampling for a norm factor of
p = 0 and to max subsampling for p = inf. L,-norm subsam-
pling is an interpolation between mean and max operations,
preserving temporal consistency similar to the mean operation
while also extracting the most meaningful feature similar to
the max operation. In line with [5], we exclusively set p =4
(referred to as L4-Sub) for CDur. An ablation study on the
subsampling factor is also provided in Section VI-B.

Subsampling is done in three stages (s1, s2, $3), where each
stage subsamples the temporal dimension by a factor of s;,j €
[1,2,3]. The time resolution is overall subsampled by a factor
of v = 4, with the three subsampling stages being (2, 2, 1). At
each of the three subsampling stages, the frequency dimension
is reduced by a factor of 4, thus after the last stage the input
frequency dimension is reduced by a factor of 64. Additionally,
a linear upsampling operation is added after the final parameter
layer, which restores the original temporal input resolution
% — T'. We investigated utilizing upsampling during training
and parameterized upsampling operations (e.g., transposed con-
volutions) but did not observe any performance gains. Due to
the above remarks, linear upsampling is only utilized during
inference. Therefore, CDur outputs predictions at a resolution
of 50 Hz (or 20 ms/frame), enabling short sound detection.

Ly(z) =

B. Temporal Pooling

CDur outputs a frame-level probability v, () € [0, 1] for each
input feature z; at time ¢. With temporal pooling, for event e,

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 25,2021 at 10:41:59 UTC from IEEE Xplore. Restrictions apply.



890 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

its event probability at clip-level y(e) € [0, 1] is an aggregated
probability of frame-level outputs y(e) = agg,.(y:(e)). As
introduced, temporal pooling is one of the significant contribu-
tors to tagging and localization performance. In our work, we
exclusively use linear softmax (LinSoft), introduced in [11] (1).

T 2
(o) = 2 M
> vile)

In contrast to the attention pooling approach [6], [8], [9],
[17], as well as AutoPool [7], LinSoft is a weighted average
algorithm that is not learned. Instead, it can be interpreted as a
self-weighted average algorithm.

CDur has two outputs: 1) The clip-level aggregate y(e) and 2)
The frame-level sequence prediction 3 (e). Since only clip-level
labels are provided during training, only the clip-level aggregate
y(e) can be back-propagated and model parameters updated. The
frame-level output y; (e) is solely utilized for evaluation.

C. Post-Processing

Since WSSED is a multi-label multi-class classification task,
with overlapping events, post-processing is required during in-
ference to transform a per event probability estimate y;(e) to a
binary representation ¢ (e), which determines whether a label is
present (y;(e) = 1) or absent (7 (e) = 0). It can help smoothen
or enhance model performance by removing noisy outputs (e.g.,
single frame outputs).

We categorize post-processing algorithms into two branches:
1) Probability-level post-processing such as double and triple
thresholding; 2) Hard label post-processing such as median
filtering. Most post-processing methods, such as median filter-
ing or double thresholding, only consider frame-level outputs
for post-processing. In our work, we propose a novel triple
thresholding technique that considers clip-level and frame-level
outputs. Though this work exclusively utilizes double and triple
thresholding, we compare it with median filtering since it is the
most common post-processing algorithm for WSSED.

Double Threshold: Double threshold [5], [14] is a probability
smoothing technique defined via two thresholds ¢y, dow. The
algorithm first sweeps over an output probability sequence and
marks all values larger than ¢y; as being valid predictions. Then
it enlarges the marked frames by searching for all adjacent,
continuous predictions (clusters) being larger than ¢jow. An
arbitrary point in time ¢ belongs to a cluster between two time
steps t1, to if the following holds:

1, H(tl,tg) s.it,t1 <t <ty

and Vo € [t1,t2], ow < Yty < Pni
0, otherwise.

cluster(t) =

The double threshold algorithm (dt(-)) can be seen in (2).

—_

,ifye) > oni

i - B ,if yt(e) > Plow
gi(e) = dt(yi(e)) = and cluster(t(e)) = 1

0, otherwise.

—_

@)

One potential benefit of double thresholding is that its parame-
ters are less susceptible to duration variations and can effectively
remove additional post-training optimization (e.g., window size
for median filter) [5]. However, double thresholding relies on
robust predictions from the underlying model, since it cannot,
contrary to median filtering, remove erroneous predictions (e.g.,
yi(e) > ¢ni, see Section VI).

Triple Threshold: One possible disadvantage of double thresh-
olding is that it does not consider the clip-level output proba-
bility. We propose triple thresholding, which extends towards
double thresholding by incorporating an additional threshold on
clip-level ¢.jip. This threshold firstly removes all frame-level
(y:(e)) probabilities which were not predicted on clip-level
(y(e)). Triple thresholding is defined as (3).

yt(e) _ {yt(e)a if y(e) > ¢clip

0, otherwise

yi(e) = di(y:(e)) 3)

Therefore, we first remove events not predicted by the model
on clip level before proceeding with double threshold post-
processing. The default ¢, threshold is set to be 0.5, since
this is also the most reasonable choice when assessing tagging
performance. Experiments denoted as +Triple, utilize ¢cjip =
0.5, brow = 0.2, ¢ = 0.75.

Median Filtering: Median filtering is a conventional hard
label post-processing method, meaning it is applied after a
thresholding operation. Let Y = (y1(e), ..., yi(e), ..., yr(e))
be a probability sequence for event e, ¢p, be a thresh-
old and let its corresponding binary sequence be Y =
(g1(e),...,ge(e), ..., gr(e)) with the relation:

if y;(€) > Puin
otherwise.

A median filter then acts on the sequence Y by computing
the median value within a window of size w. In practice, a me-
dian filter will remove any event segments with frame duration
<[4 and merge two segments with distance < |% |. In our
view, median filtering skews model performance since it can
delete or insert non-existing model predictions, thus making fair
model comparisons unfeasible. Many successful models utilize
an event-specific median filter, where w(e) is estimated relative
to each event’s duration within the labeled development set.

IV. EXPERIMENTAL SETUP

All deep neural networks were implemented in PyTorch [21],
front-end feature extraction utilized librosa [22] and data pre-
processing used gnu-parallel [23]. Even though a plethora of
front-features exist, log-Mel spectrograms are most commonly
used by the SED community due to their low memory footprint
(compared to spectrograms) and excellent performance [24]. If
not further specified, all our experiments use 64-dimensional
log-Mel power spectrograms (LMS) front-end features. Each
LMS sample was extracted by a 2048 point Fourier transform
every 20 ms with a Hann window size of 40 ms using the
librosa library [22]. During training, zero padding to the longest
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(c) DCASE2018 Task 4

Evaluation data duration boxplot distributions for the URBAN-SED and DCASE2017,18 datasets. Each whisker represents the minimum and maximum

duration to lie within 99.3% of a normal distribution. Each dot represents an outlier, while boxes represent the median and likely range of standard deviation within
the first and third quantile. The mean duration for each event is highlighted individually (white boxes) as well as the global average (red box).

sample-length within a batch is applied, whereas a batch-size of
1 is utilized during inference, meaning no padding. A batch-size
of 64 is utilized during training for all experiments. Moreover,
training uses AdamW [25], [26] optimization with a starting
learning rate of le-4, and successive learning rate reduction
if the cross-validation loss did not improve for three epochs.
Training was terminated if no loss improvement has been seen
for seven epochs. The available training data was split into
a label-balanced 90% training and a 10% held-out validation
set for model training using stratification [27]. Furthermore,
we utilized a custom sampling strategy such that each batch
contained at least a single instance of each event. Note that for
all experiments, we neglected the development subset of each
dataset. All pseudo-random seeds for each experiment (model
initialization, train/cv split, the order of batches) were fixed and,
therefore, reproducible. The model contained overall 681,068
trainable parameters, having a size of 2.7 megabytes on disk,
making it lightweight and possible to be deployed on embedded
systems. The source code is available.'

A. Dataset

This paper uses three widely researched datasets: URBAN-
SED, DCASE2017 Task 4 and DCASE2018 Task 4. Each eval-
uation data length distribution can be seen in Fig. 2. Please note
that estimating events with a long duration (e.g., 10 s) is equal
to audio tagging. We additionally provide the number of events
per clip for each evaluation dataset in Fig. 3.

URBAN-SED. URBAN-SED [28] is a sound event detection
dataset within an urban setting, having £/ = 10 event labels (see
Fig. 2(a)). This dataset’s source material is the UrbanSound8k
dataset [29] containing 27.8 hours of data split into 10-second
clip segments. The URBAN-SED dataset encompasses 10,000
soundscapes generated using the Scaper soundscape synthesis
library [28], being split into 6000 training, 2000 validation

'Source code is available https://github.com/RicherMans/CDur

URBAN-SED
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Fig. 3. Number of events in a clip for each evaluation dataset.

and 2000 evaluation clips. The training set contains mostly
10-second excerpts, which are weakly-labeled, whereas each
clip contains between one and nine events. The evaluation
dataset is strongly labeled, containing up to nine events per
clip, as indicated in Fig. 3. In our work, we only utilize the
training and evaluation dataset and neglect the validation one.
An essential characteristic of URBAN-SED is that since both
the audio and annotations were generated computationally, the
annotations are guaranteed to be correct and unbiased from
human perception. As it can be seen in Fig. 2(a), the evaluation
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set of the URBAN-SED dataset seems to be artificially truncated
due to the soundscape composition.

DCASE2017: The DCASE2017 task 4 — Large-scale weakly
supervised sound event detection for smart cars dataset is also
utilized. The dataset consists of 10-second clips split into train-
ing (51,172 clips), development (488 clips), and evaluation sub-
sets (1103 clips). Development and evaluation sets are strongly
labeled, whereas the training set is weakly-labeled. For our work,
we only utilize the training and evaluation subsets and neglect the
development one. Different from URBAN-SED, DCASE2017
is subsampled from AudioSet [30], whereas I = 17 different
car-related events need to be estimated. However, as seen from
the evaluation distribution in Fig. 2(b), each event’s duration is
distributed much more naturally (between 2.5 s and 8.5 s). In
particular, the event “civil defense siren” seems to be the event
with the most substantial duration variance, having, on average,
a duration of 8.57 s, yet some samples have a duration of < 1 s.
In our view, the difficulty within this dataset is the ambiguous
labels, e.g., “car’” and “car passing by’ or the four types of sirens.
Please note that due to this dataset’s naturalness, it might contain
non-target events, which URBAN-SED might not. Most clips in
this dataset contain one distinct event, as indicated in Fig. 3.

DCASE2018: This dataset was utilized during the
DCASE2018 Task4 challenge - Large-scale weakly
labeled semi-supervised sound event detection in domestic
environments and contains 2 = 10 unique events. Different
from the other datasets used in our work, the training data
is partially unlabelled/incomplete. While the entire training
dataset consists of 55990 clips, being similarly sized as the
DCASE2017 dataset, only 1578 clips contain labels. The rest
54412 clips are split into in-domain data (14413 clips), where it
is guaranteed that training events occur within the subset, and
out-domain data (39999 clips), which might contain unknown
labels. Even though the data is drawn from AudioSet, the ten
events have been manually annotated. The evaluation data
duration distribution can be seen in Fig. 2(c). Most clips in
this dataset contain one or two distinct events, as indicated
in Fig. 3. Compared to other datasets, DCASE2018 has the
largest average difference duration-wise between the shortest
(dishes, 0.62 s) and longest (vacuum cleaner, 8.37 s) events,
respectively. Moreover, it also hosts the largest variance within
an event, e.g., Speech can be shorter than 1 s, but also 10 s
long, indicated by a large number of outliers (Fig. 2(c)). Our
work utilizes the training (weak) subset of the dataset for model
estimation if not otherwise specified. It should be noted that
the evaluation data is identical to the DCASE2019 challenge,
which, in addition to DCASE2018, adds synthetic hard labeled
data for training.

B. Data Augmentation

A popular method in combating model overfitting and data
sparsity is data augmentation. This work investigates two
different data augmentation methods, namely SpecAugment
(SpecAug) and Time Shifting, in addition to a modified train-
ing criterion (Label Smoothing). Each additional augmentation
method is individually provided. Further, +All refers to the

utilization of all three methods described below (+SpecAug,
+LS, +Time).

SpecAug: Recently, SpecAug, a cheap yet effective data aug-
mentation method for spectrograms, has been introduced [31].
SpecAug randomly sets time-frequency regions to zero within
an input log-Mel spectrogram with D (here 64) number of
frequency bins and 7' frames. Time modification is applied
by masking 7, times 7, consecutive time frames, where 7t
is chosen to be uniformly distributed between [to, to + 7:0]
and to is uniformly distributed within [0, T — 7). Frequency
modification is applied by masking 7, times 7y consecutive
frequency bins [ fo, fo + 7). where 1)y is randomly chosen from
auniform distribution in the range of [0, o] and fo is uniformly
chosen from the range [0, D — 7). For all experiments labeled
+SpecAug we set v, = 2,10 = 60,7y = 2,170 = 12.

Time Shifting: Another beneficial augmentation method for
WSSED is time-shifting. The goal is to encourage the model to
learn coherent predictions. Effectively, given a clip of multiple
audio frames X = [xy,...,x7], X € RT*P time rolling of
length 7y, will shift (and wrap around) the entire sequence
by nsp, frames to X' = [x,,,,, ..., X7, ..., X1,...,Xy,,—1). For
each audio-clip, we draw 7, from a normal distribution
N(0,10), meaning that we randomly either shift the audio clip
forward or backward by 7, frames. Time shifting is labeled as
+Time in the experiments.

Label Smoothing: As our default training criterion binary
cross entropy (BCE), defined as:

L(y,9) = —glog(y) + (1 — ) log(1 — y), “)

between the clip-level prediction y(e) and the ground truth g(e)
isutilized. BCE encourages the model to learn the provided train-
ing ground truth labels. However, in many real-world WSSED
datasets, the ground truth labels are not necessarily correct
and open to interpretation (e.g., is child babbling considered
Speech?). Since labels in WSSED are often noisy and thus
unreliable, the BCE criterion (4) wrongly encourages overfitting
towards the training ground truth labels, which might, in turn,
decrease inference performance. Label smoothing [32] (LS) is a
commonly used technique for regularization, which relaxes the
BCE criterion to assume the ground truth itself is noisy. Label
smoothing modifies the ground truth label (3(e)) for each event

e € [1,..., E] by introducing a smoothing constant €, as seen
in Equation (5).

N . . 1

Jus(e) = LS(g(e)) = (1 — e)g(e) + ‘B (5)

In our work, we exclusively set e = 0.1 for all experiments
labeled +LS.

C. Evaluation Protocol

Our work utilizes three evaluation metrics:

1) Audio Tagging F1 score (Tagging-F1). This metric mea-
sures the models’ capability to correctly identify the pres-
ence of an event within an audio clip.

2) Segment-F1 (Seg-F1) score. This metric is an objective
measure of a given model’s sound localization capabil-
ity, measured by the segment-level (adjustable) overlap
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between ground truth and prediction. Seg-F1 cuts an au-
dio clip into multiple fixed sized segments [33]. Seg-F1
can be seen as a coarse localization metric since precise
time-stamps are not required.

3) Event-F1 score. This metric measures on- and off-set
overlap between prediction and ground truth thus is not
bound to a time-resolution (like Seg-F1). The Event-F1
specifically describes a model’s capability to estimate a
duration (i.e., predict on- and off-set).

Audio tagging is done by thresholding the clip-level output
(after LinSoft) y(e) of each event with a fixed threshold of
®rag = 0.5 in order to obtain a many-hot vector, which is then
evaluated. The threshold ¢y, is fixed since this work focuses
on improving Seg- and Event-F1 performance. Segment and
event Fl-scores are tagging dependent, meaning that they re-
quire at least the correct prediction of an event to be assessed.
Thus, we perceive audio tagging as the least difficult metric
to improve since its optimization directly correlates with the
observed clip-level training criterion. Since our work mainly
focuses on duration robust estimation, Event-F1 [33] is used
as our primary evaluation metric, which requires predictions
to be smooth (contiguous) and penalizes irregular or disjoint
predictions. To loosen the strictness of this measure, a flexible
time onset (time collar, t-collar) of 200 ms, as well as an
offset of at most 20% of the events‘ duration, is considered
valid. Furthermore, we use Seg-F1 [33] with a segment size
of 1 s. Lastly, in theory, two Tagging-F1 scores exist. One
can be retrieved from the frame-level prediction output (i.e.,
maxy.7 y:(€)), while the other can be calculated after temporal
pooling (i.e., y(e)). We exclusively report the Tagging-F1 score
from the clip-level output (y(e)) of the model in this work. Note
that the clip-level output is unaffected by post-processing.

Since each proposed Fl-score metric is a summarization of
individual scores, two main averaging approaches exist. Micro
scores are averaged across the number of instances (e.g., number
of samples), whereas macro scores are averaged across each
event (e.g., first compute F1 score on sample basis per event,
then compute the average of all scores).

The sed_eval toolbox [33] is utilized for score calculation
(Seg-F1 and Event-F1 scores). Each respective dataset is evalu-
ated using the following default evaluation metrics:

DCASE2017: The DCASE2017 challenge originally con-
sisted of two subtasks (tagging and localization). The default
evaluation metric on the DCASE2017 dataset is 1 s segment-
level micro Fl-score. We, therefore, report all our metrics on
the micro-level (Event, Segment, Tagging).

DCASE2018: All metrics for the DCASE2018 dataset are
macro-averaged, and the primary metric during the challenge
was Event-F1.

Urban-SED: The default evaluation metric on this dataset is
1 s segment-level macro Fl-scores, thus on average, only two
segments need to be estimated for each event (see Fig. 2((c)).

V. RESULTS

In this section, we report and compare our results on the three
publicly available datasets (see Section IV-A). If not otherwise

TABLE I
URBAN-SED RESULTS USING OUR PROPOSED CDUR MODEL. +ALL REFERS
TO UTILIZING ALL AUGMENTATIONS. F1 SCORES ARE MACRO-AVERAGED. R
REPRESENTS THE OUTPUT TIME RESOLUTION FOR A RESPECTIVE
APPROACH IN Hz

Approach [ R Tagging-F1 ~ Seg-F1  Event-F1

Base-CNN [28] 1 - 56.00 -
SoftPool [7] 2.69  63.00 49.20 -
MaxPool [7] 2.69 7430 46.30 -
AutoPool [7] 2.69 75.70 50.40 -
Multi-Branch [13] 50 - 61.60 -
Supervised SED [34] 431 - 64.70 -

Ours 76.09 62.83 19.92

+LS 75.00 61.69 18.74

+Time 50 76.13 62.61 19.69

+SpecAug 76.49 64.19 20.58

+All 77.13 64.75 21.73

+All +Triple 77.13 64.75 22.54

specficied, all our reported results in this section utilize by de-
fault double thresholding with ¢p; = 0.75, ¢ow = 0.2 and BCE
(4) as the criterion.

A. Urban-Sed

In Table II, we compare previous approaches on the URBAN-
SED corpus to our CDur approach.

Our baseline CDur result can be seen to outperform all
compared approaches in terms of Tagging-F1. Moreover, its
Seg-F1 score is also significantly higher (62.83%) than all other
previous WSSED approaches. Even though CDur is capable
of estimating clip- and segment-level events, it falls short of
providing a competitive Event-F1 performance. We believe that
the comparatively low Event-F1 performance stems from the
nature of urban auditory scenes, where most events occur in a
much more random fashion compared to, e.g., domestic ones.
Moreover, the performance discrepancy between Seg-F1 and
Event-F1 further exemplifies the difficulty in WSSED to obtain
fine-scale onset and offset estimates. When adding additional
augmentation methods, the performance further improves (77.13
Tagging-F1, 64.75 Seg-F1). Most notably, our augmented CDur
also outperforms the fully-supervised SED system in [34] in
terms of Seg-F1 (64.70%). Lastly, by further replacing double
thresholding with triple thresholding as the post-processing
method, the Event-F1 score improves from 21.73 to 22.54%.
We provide a per event breakdown of our model performance
in Fig. 4 and compare CDur to the next best (supervised SED)
model from [34]. As seen, CDur performs evenly across all ten
events in terms of Tagging-F1, averaging ~ 70% across most
events. A similar observation can also be made regarding the
Seg-F1 score, where most events obtain a score of ~ 65%. Even
though CDur only slightly outperforms the supervised approach
from [34], analyzing the per event Seg-F1 scores reveals that
CDur achieves an F1 score of 71.9 compared to 66.0 on the
shortest event within the dataset (car_horn, here car). Event-F1
results are also shown to be evenly distributed, reaching from
the lowest 12.0% for “dog” to 41.5% for “‘jackhammer”. Future
work is still required to exclusively estimate very short events
effectively, such as in this dataset.
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Fig.4. CDur perevent F1 score results on the URBAN-SED dataset. Segment-
F1 scores are compared to the next best (supervised) approach [34].The events
are sorted from (left) short to (right) long average duration.

TABLE III
DCASE2017 RESULTS COMPARED TO OUR APPROACH. F1-SCORES ARE
MICRO AVERAGED. BEST RESULTS HIGHLIGHTED IN BOLD. RESULTS
UNDERLINED ARE FUSION SYSTEMS. R REPRESENTS THE OUTPUT TIME
RESOLUTION FOR A RESPECTIVE APPROACH IN Hz

Approach [| R Tagging-F1 ~ Seg-FI ~ Event-Fl

MaxPool [7] 2.69  25.70 25.20 -
AutoPool [7] 2.69 4540 42.50 -
Stacked CRNN [35] 50 43.30 48.90 -
Fusion GCRNN [36] 24 55.60 51.80 -
GCRNN [36] 24 54.20 47.50 -
GCCaps [37] 24 58.60 46.30 -
Winner SED [18] 1 52.60 55.50 -

Ours 52.39 46.12 15.12

+LS 52.07 46.73 15.60

+Time 50 49.83 46.60 16.15

+SpecAug 55.07 49.94 15.46

+All 55.29 50.79 15.26

+All +Triple 55.29 49.93 15.73

B. DCASE2017

We here provide the results on the DCASE2017 dataset,
where all reported metrics are micro averaged. Regarding the
DCASE2017 dataset results in Table III, it can be observed
that even though the dataset contains the most available training
data, Tagging- (52.39%), Seg- (46.12%), and Event-F1 (15.12%)
performance is sub-optimal. After adding augmentation to
CDur training, Tagging- (55.29%), Seg- (50.79%) and Event-
F1 (15.26%) performance significantly increases. However, by
replacing double threshold with triple threshold, no gains can be
observed. We believe that our performance on this dataset could
improve by increasing the number of trainable parameters since
the most comparative approach to our in [36] utilized at least
six convolutional layers. Moreover, note that our approach is a
single model for both Tagging- and Seg-F1 evaluation, while the
best comparable model [36] trained two networks with different
time resolutions for each respective task. Other approaches are
specialized for one individual task (tagging, localization), e.g.,
the winning localization system [18], a large CNN fusion model,
outperforms our method only regarding Seg-F1. This is to be
expected, since [18] outputs their predictions on a coarse time

cour
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Fig. 5. CDur per event evaluation F1-scores on DCASE2017. The scores are
compared to the winning SED model [ 18] from the DCASE2017 challenge. The
events are sorted from (left) short to (right) long average duration.

resolution of at least 1 s (1 Hz), matching the segment-level
criterion. Besides, CDur is the only approach preserving ac-
ceptable performance, yet with a high time-resolution of 50 Hz.
A closer look at the per event F1 scores in Fig. 5 reveals that
CDur has difficulties predicting ambiguous events such as “car
passing by” and “car”’. Regarding joint tagging and localization
performance, CDur shows promising results for the events “air
horn” (2.78 s), “civil defense siren” (8.57 s) and “motorcycle”
(7.23 s), achieving ~ 68% Tagging-F1, ~ 65% Seg-F1 and ~
38.5% Event-F1 average scores. Notably, the best comparable
SED model [18] can be seen to miss some events in terms of
Seg-F1. Those events are “car_passing_by,” “ambulance” and
“bus”. In stark contrast, CDur’s worst Seg-F1 performance is
also on “car_passing_by,” but CDur still manages a Seg-F1
score of 9.4% (against 0.0%). Compared with other approaches,
one distinct feature of CDur is that it does not miss any event,
regarding all utilized metrics. Moreover, performance for the
shortest duration events “air horn” (2.78 s, Event-F1 34.2%),
“train horn” (2.05 s, Event-F1 26.1%), ‘“screaming” (2.54 s,
Event-F1 18.4%) further exemplifies our model’s capability in
detecting short duration events.

C. DCASE2018

For these experiments, we utilize two given DCASE2018
subsets for model training, being the common training subset
(weak) and the unlabeled in-domain subset. Weak labels were
estimated on the in-domain dataset for further training using
our best performing CDur model (+All, 70.56 Tagging-F1) by
thresholding the clip-level output with a conservative value of
@g = 0.75. Since not all clips obtained a label (no event has
a probability higher than 0.75), we report that our predicted
in-domain subset consists of 9266/14 412 clips. Note that other
approaches estimating labels for the in-domain data are likely to
be different from ours (such as [6], [10], [17], [38]). We verify
that our predicted labels are usable by training CDur exclusively
on the generated in-domain labels (Table IV). Further, we refer
to “Weak+" as the merged dataset of “Weak™ and the predicted
“In-domain” data, containing 10 844 semi-noisy clips.
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TABLE IV
DCASE2018 EVALUATION RESULTS GROUPED BY TRAINING DATA. THE BEST
RESULT IS HIGHLIGHTED IN BOLD, AND FUSION APPROACHES ARE
UNDERLINED. R REPRESENTS THE OUTPUT TIME RESOLUTION FOR A
RESPECTIVE APPROACH IN HZ

Approach Data R Tagging- Seg-FI  Event-F1
F1

Hybrid-CRNN [10] Weak+ 50 - - 25.40
Second’ 18 [38] Weak+ 50 - - 29.90
Winner’18 [17] Weak+ 16 - - 32.40
CRNN [5] Weak || 25 - - 32.50
Multi-Branch [13] Weak || 50 - - 34.60
cATP-SDS [6] Weak+ 50 65.20 - 38.60
Ours 69.20 59.89 31.70
+All Weak || 50 70.56 63.17 35.71
+All +Triple 70.56 62.84 36.23
Ours  In-domain 50 64.68 59.43 31.12
Ours 67.19 59.85 36.49
+LS 69.63 62.96 36.87
+Time 68.67 62.63 38.03
+SpecAug ekt 1150 G003 6204 3628
+All 69.11 63.53 39.18
+All +Triple 69.11 63.03 39.42

The results in Table IV indicate our models’ superior perfor-
mance regarding the three evaluation metrics. CDur trained only
with weak data (Event-F1 31.70) approaches performance near
the winning model of 2018, which utilized additional (weak+)
data. Moreover, training our model only on its estimated, noisy
labels (in-domain) leads to a similar performance when trained
on the weak dataset in terms of Seg- and Event-F1. This re-
sult shows that CDur is capable of handling noisy labels to
estimate an events’ duration successfully. However, Tagging-F1
performance deteriorates from 69.20 to 64.68% when training
only on noisy labels. Training CDur on the merged weak+ data
further enhances performance in terms of Event-F1 (36.49%)
but worsens the Tagging-F1 (67.19%) and Seg-F1 (58.12%) per-
formance. We believe that the additional, noisy data-enhanced
onset and offset estimation accuracy, leading to an Event-F1
improvement. However, the inconsistency between clean (weak)
and noisy (in-domain) labels possibly confused CDur’s internal
belief state, resulting in a Tagging-F1 performance downfall.
Further, by explicitly modeling all labels as being noisy via
label smoothing (weak+ and +All), the Tagging-F1 performance
significantly improves from 67.19 to 69.11% and returns to orig-
inal, clean label levels of only using weak data (69.20%). After
incorporating our proposed augmentation methods as well as
triple thresholding, our best Event-F1 result 39.42% is achieved.
This result is remarkable since it would perform at eighth place
on the DCASEI19 challenge, which has access to hard labels
during training, yet unavailable in our case.

It is notable that previously well-performing models [6],
[13], [17], [38] all require a fully-labeled development dataset
in order to estimate a per event median filter. By contrast,
our approach does not rely on such labels yet still achieves
competitive results. Note that it would be possible to further
enhance our performance by estimating per event thresholds,
similar to [6], [17]. However, we refrain from doing so since one
of our goals is to propose an inherently well-performing model
without post-training hyperparameter tuning. In Section VI we
will further discuss this post-processing issue. Furthermore, the
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Fig. 6. CDur event evaluation Fl-scores on DCASE2018. The provided F1
scores are compared against the competitor (cCATP-SDS) from [6]. The events
are sorted from (left) short to (right) long average duration.

per-event Fl-scores for our best performing model is shown
in Fig. 6. Results reveal that CDur is capable of excellent
performance across all ten events, excelling at predicting long
events such as “vacuum cleaner” (average duration 8.37 s,
Event-F1 58.6%) as well as short ones such as “alarm” (average
duration 2.1 s, Event-F1 50.0%). Naturally, shorter events (cat,
dog, dishes) are more challenging to predict due to their bursty
nature, therefore overall, the worst-performing events for our
model (1.61 s - 36.4%,1.50 s - 21.6%, 0.62 s - 15.8%). In
particular, our model struggles at predicting “dishes” on a clip
level (Tagging-F1 40.8%), while all other labels are estimated
with ~ 70% Tagging-F1 score. When comparing CDur against
cATP-SDS some interesting observations are seen. First, only
on the event “Electric,” cATP-SDS outperforms CDur in terms
of Event-F1 (37.4% vs. 51.2%), whereas for most other events,
CDur is better. Second, estimating short events is hard for cATP-
SDS. This can be seen by comparing Tagging-F1 with Event-F1
scores. Specifically, even though cATP-SDS outperforms CDur
in terms of Tagging-F1 estimating “dishes” (40.8% vs. 55.4%),
their Event-F1 scores on this event are near identical (15.8%
vs. 15.1%). This means that even though cATP-SDS is more
capable of detecting the presence of this short event than CDur,
it more often fails to accurately predict on- and off-sets.

D. Performance Influence of Triple Threshold

Another essential question to ask is how the triple threshold
behaves when utilizing different thresholds and if it indeed
improves performance. Recall that triple thresholding with
¢eiip = 0 reduces to double thresholding (2). Here we
investigate the following thresholds: ¢y, € [0.1,0.2,0.3], ¢ €
[0.5,0.6,0.75,0.9], derip € [0.0,0.1,0.25,0.5,0.75,0.9]. The
results for each respective dataset in terms of Event-F1 can be
seen in Fig. 7.

Our proposed setting with ¢jip = 0.5 and ¢n; = 0.75, Prow =
0.2 can be seen to indeed perform best on the DCASE2018
dataset (see Fig. 7(b)). However, for the other two datasets,
a lower threshold of ¢ = 0.1 seem to be favorable on the
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DCASE2017 and URBAN-SED datasets, culminating in Event-
F1 scores of 18.97 (DCASE2017, micro) and 24.95 (URBAN-
SED, macro) respectively. Again, please note that considerable
gains can be obtained by optimizing our thresholds if we choose
to optimize towards a specific dataset. For example, our best
reported DCASE2017 model (micro Event-F1 15.73) can be
improved to 18.97, by modifying ¢jow = 0.1. The same obser-
vation can be made for URBAN-SED (22.54 — 24.95).

A clip threshold of ¢, = 0.5 seems to be a valid choice
within our investigated thresholds since that threshold performs
best on the DCASE2017/2018 datasets. On the URBAN-SED
dataset, larger thresholds with a high variance should be pre-
ferred (¢row = 0.1, i = 0.9, drip = 0.75). However, still the
best performing approach (24.95 Event-F1) on the URBAN-
SED dataset utilizes ¢cpip = 0.5. Correctly, by observing the
trend of ¢y, from left to right (left = double threshold ¢, =
0.0), one can observe that triple thresholding is effective on all
three datasets and improves the average performance up until
detip = 0.9 (see straight lines in Fig. 7).

VI. ABLATION
A. Temporal Pooling Alternatives to LinSoft

This ablation study investigates the influence of CDur’s per-
formance in regards to its temporal pooling layer. The default
temporal pooling layer (LinSoft) is replaced by four commonly
utilized pooling functions, described in Table V. Soft- and Auto
pooling have been introduced in [7]. Note that Auto pool-
ing [7] learns a non-constrained weight parameter a(e) € R for
each respective event e (initialized as one), whereas Attention
pooling [11] uses a per timestep, per event weight wy(e) €
[0, 1].

The ablation study results can be seen in Table VI. The results
show that, indeed, LinSoft is to be seen as the best performing
pooling method for CDur. In the case of DCASE2017, Auto and
Soft pooling are both the closest competitors to LinSoft. How-
ever, on the URBAN-SED dataset, Soft and Auto pooling both

TABLE V
TEMPORAL POOLING ALTERNATIVES TO LINSOFT INVESTIGATED IN THIS
WORK. SOFT- AND MAX POOLING FUNCTIONS ARE PARAMETER-FREE, WHILE
AUTO AND ATTENTION POOLING ARE PARAMETERIZED

Temporal pooling [[ Formulation

_ T _cxpyi(e)
Soft y(e) = Zt Yt (e) E'JT expy;(e)
Max || y(e) = mtaxyt(e)
_ T __exp(a(e)yi(e)) _
Auto y(e) = Zt yt(e) ZjT exp (a(e)y;(e))
Attention || y(e) = ST w;(e)
TABLE VI

COMPARISON OF DIFFERENT TEMPORAL POOLING FUNCTIONS COMPARED TO
LINSOFT. DCASE2018 RESULTS ARE TRAINED ON THE WEAK DATASET.
POST-PROCESSING IS SET TO THE DEFAULT DOUBLE THRESHOLD, AND NO
AUGMENTATION IS APPLIED

Task Pooling || Tagging-F1  Seg-FI  Event-FI
LinSoft 52.39 46.12 15.12
Auto 47.53 44.25 13.06
DCASE2017 Soft 50.45 44.18 13.19
Attention 51.04 41.63 8.99
Max 47.63 32.34 7.39
LinSoft 69.20 59.89 31.70
Auto 67.13 58.58 19.90
DCASE2018 Soft 68.01 56.76 17.79
Attention 66.52 55.85 21.95
Max 66.01 45.80 17.85
LinSoft 76.09 62.83 19.92
Auto 75.14 38.67 0.00
URBAN-SED Soft 73.87 37.47 0.00
Attention 74.61 59.89 19.33
Max 74.50 56.70 16.19

completely fail to generate accurate on and offsets, indicated by
an Event-F1 of 0.0. Further, while Attention shows competitive
performance across all datasets in terms of all metrics, it is still
mostly inferior to LinSoft, specifically in terms of Event-FI.
Most importantly, across all three proposed datasets, LinSoft
is the only temporal pooling method that provides excellent
performance, e.g., Auto and Soft pooling outperform Attention
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TABLE VII
INFLUENCE OF DIFFERENT SUBSAMPLING FACTORS v ON ALL THREE
DATASETS. OUR DEFAULT SUBSAMPLING FACTOR IN OUR WORK IS 4. THE
DCASE2018 MODEL IS TRAINED ON THE WEAK TRAINING SET. BEST RESULT
FOR EACH RESPECTIVE METRIC IS HIGHLIGHTED IN BOLD

Task  Factor v [[ Tagging-FI  Seg-FI  Event-FI

T 5033 3595 9.05
2 || 4450 4074 1182

DCASE2017 4 || 52.39 4612 15.12
8 || 52.72 4722 1479
T 69.95 60.80 2671
2 || 6975 60.16 2688

DCASE2018 4 || 6920 5980 3170
8 || 6647 5815 3318
T 7429 6026 1186
2 || 7441 60.13 1470

URBAN-SED 4 || 76.09 6283 19.92
8 || 75.00 61.18 2083
TABLE VIII

EVENT-F1 SCORES FOR THE SHORTEST EVENT IN EACH DATASET, BEING
DISHES (DCASE2018), CAR_HORN (URBAN-SED) AND TRAIN_HORN
(DCASE2017)

Subsampling factor v Dishes  Car_horn  Train_horn
Avg. Duration 0.62 s 1.30 s 2.05s
1 13.3 21.8 23.1
2 16.0 31.8 24.9
4 23.2 32.0 28.7
8 16.2 33.9 21.7

on the DCASE2017 dataset but are mainly inferior to Attention
on the DCASE2018 and URBAN-SED datasets.

B. Subsampling Factor Influence

Another ablation study in our work focuses on the sub-
sampling factor v (default v =4) and its implications to-
wards duration robustness and Event-F1 performance. Here
we compare v = 4 — (2,2, 1), against three other factors (v =
1= (1,1,1),v=2~(2,1,1),v =8~ (2,2,2)). The tem-
poral subsampling function is the default L4-sub (see Table I).
The result of this experiment can be seen in Table VII. For all
experiments, a clear trend can be observed that a subsampling
factor of one or two perform worse than factors 4 and 8. A
larger subsampling factor of 8 is seen to benefit Tagging- and
Seg-F1 performance on DCASE2017/8 datasets. These results
are in line with our previous observations in [5]. The default
subsampling factor of 4, while not always performing better
than a factor of 8, can be seen to be a trade-off between tagging
and localization performance. Also, even though a subsampling
factor of 8 improves Event-F1 performance on the DCASE2018
and URBAN-SED datasets, we believe that a subsampling factor
of 4 should be preferred on any unknown dataset due to its
robustness to possibly unknown, short events. When comparing
the shortest events for each dataset according to the subsampling
factor in Table VIII , it can be seen that a factor of 4 is overall
the most robust choice on all three datasets.Optimizing the
subsampling factor can yield significant performance gains in
terms of Event-F1. However, this optimization requires prior
knowledge about each event’s duration, which might not be
available.

TABLE IX
POST-PROCESSING ABLATION (-P0ST) RESULTS COMPARING CATP-SDS WITH
CDUR ON THE DCASE2018 EVALUATION DATASET

Approach Data || Tagging-F1  Seg-FI  Event-FI

cATP-SDS [6]  Weak+ 65.20 - 38.60

Our cATP-SDS [6] Weak 58.98 55.20 28.65
-Post Weak 58.98 17.83 3.77

Our cATP-SDS [6] Weak+ 66.11 60.39 34.07
-Post  Weak+ 66.11 17.74 2.74

Ours Weak 69.20 59.89 31.70

-Post Weak 69.20 62.50 23.57

Ours (Best)  Weak+ 69.11 63.03 39.42

-Post  Weak+ 69.11 63.97 27.05

C. Model Comparison Without Post-Processing

Another critical question is whether our model is inher-
ently capable of producing duration robust (i.e., high Event-F1)
predictions or if this is solely due to the applied post-processing
approach. Thus, this ablation study focuses on removing any
post-processing from a trained model (further denoted as -Post)
and using binary thresholding y:(€) > @bin, Poin = 0.5 to re-
evaluate frame-level predictions. Since most works optimize
their post-processing methods towards the given dataset, per-
formance and generalization capability can be skewed towards
that specific dataset. We provide this ablation study for two suc-
cessful models on the URBAN-SED and DCASE2018 datasets,
respectively. Note that we do not compare on the DCASE2017
dataset since our proposed model does not outperform con-
temporary approaches. Moreover, the main objective in the
DCASE2017 challenge was to predict on a 1-second scale,
meaning that the ablation would compare rough-scale estimates
(1 s) with our fine-scale CDur (20 ms), which we believe does
not provide further insights into CDur. Thus, we reimplemented
the currently best performing model [6] on the DCASE2018
dataset as well as as [7] on the URBAN-SED for comparison of
duration robustness.

DCASE2018: As can be seen in Table IX, our reimplemented
cATP-SDS model (34.07 Event-F1) is within the scope of their
reported average performance [6] as well as better perform-
ing in terms of Tagging-F1.Our early stopping and balanced
batch sampling training schedule, as well as possibly better
noisy in-domain labels, could be the explanation behind this
performance improvement. It is also indicated that the choice of
post-processing approach is crucial to event-level performance.
However, post-processing has little effect on segment-level
performance. CDur’s performance is affected by the choice
of post-processing method (here double/triple thresholding).
In absolute, our model drops as much as 12% in Event-F1
score when removing double/triple thresholding. However, even
though event-level performance is negatively affected, segment-
level performance is enhanced for both our approaches. This is
likely due to default post-processing method using a conserva-
tive threshold choice of ¢y = 0.75 (Seg-Precision 74.51%, Seg-
Recall 56.80%), while ¢y, = 0.5 enhances recall performance
(Seg-Precision 73.70%, Seg-Recall 58.35%), thus improving
Seg-F1. Conservative threshold values have also been reported
to impact Event-F1 performance [39] positively. Therefore, we
can observe an absolute increase from 0.9 to 3.0% Seg-F1 for

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 25,2021 at 10:41:59 UTC from IEEE Xplore. Restrictions apply.



898 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

TABLE X
POST-PROCESSING ABLATION (-POST) RESULTS COMPARING [7] (NO
POST-PROCESSING) APPROACHES WITH CDUR ON URBAN-SED. MODELS
WITH A “OUR” PREFIX ARE REIMPLEMENTATIONS FOR METRIC
COMPARISON PURPOSES

Approach [ Tagging-F1  Seg-FI  Event-F1
SoftPool CNN [7] 63.00 49.20 -
MaxPool CNN [7] 74.30 46.30 -
AutoPool CNN [7] 75.70 50.40 -
Our SoftPool CNN [7] 59.86 45.80 245
Our MaxPool CNN [7] 74.34 58.76 13.04
Our AutoPool CNN [7] 72.74 56.68 6.89
Ours (Best) 77.13 64.75 21.73
-Post 77.13 63.86 14.54

our models. In contrast to our approach, cATP-SDS [6] seems
to be strongly dependent on the post-processing method. Its
event and segment level performance plummets for both weak
(28.65 — 3.77) and weak+ (34.07 — 2.74) training sets. The
reason for this behavior is their dependence on clip-level post-
processing, which effectively filters out false-positives. Different
from cATP-SDS, CDur does not require post-processing in
order to effectively localize sounds and estimate each sound’s
respective duration.

URBAN-SED: Since most previous work, such as [7] only
utilized segment-level micro F1 scores. We reimplemented those
models to compare the Event-F1 performance to ours. We
also utilized the same training schema (Pitch augmentation,
binarization post-processing) as in [7]. These results show that
our reimplementations perform worse in terms of Tagging-F1
performance, but the Seg-F1 score improves compared to the
original publication (see Table II). It can be expected that an
improved Seg-F1 can correlate with an improved Event-F1.

Please note that all models reported in [7] only utilize a
binary threshold strategy, identical to our (-Post) result, as post-
processing. By removing our post-processing, we can compare
both approaches from a common point of view. As it can be
seen in Table X, CDur is capable of outperforming the best
localization model (MaxPool CNN), in terms of segment and
Event-F1, as well as capable of outperforming the best tagging
model (AutoPool CNN).

D. Quantitative Results

Since our metrics are threshold-dependent, meaning that only
hard labels were evaluated, we provide a quantitative analysis
to strengthen the point of our models’ duration robustness. Two
distinct clips containing at least three events from DCASE 2018
and URBAN-SED datasets are randomly sampled. Regarding
DCASE2018, our sampled clip (bUDfTkJCg0o) contains three
different events (speech [green], frying [blue], dishes [red]). We
compare the probability outputs y; (e) of CDur (Event-F1 39.42)
against cATP-SDS (Event-F1 34.07). The comparison can be
seen in Fig. 8. At first glance, it can be seen that both methods
are incapable of producing perfect results. Therefore we focus
on the errors made by each individual approach. In particular, for
the speech event (green), one can notice that cATP-SDS predic-
tions exhibit a peaking behavior with no apparent notion of the
speech duration. Therefore, cATP-SDS requires median filtering

(A) YbUDFTKJCgOo_20.000_30.000

(B) Ground truth

Speech
Frying
Dishes
(C) Ours
1.00 B s — o s

= Dishes
: © Frying
- Speech

o
S
@

probability
o
@
S

(D) cATP-SDS

H : Y R : iy~
) £y AR WINEA Y
1 pIYIN w : q i

124 1 :1\[ \?I g\'I \,’ \li

1.00 npr

IR IR
e\ LV EV AT Maa G g
. ,"g‘l‘ ‘,,}!‘”"\;’é V% R"’zlf

I : 3
A l'"‘li “

probability
)
I
S

o o
2N
[SER
22,

0 50 100 150 200 250 300 350 400 450 500
Frame (20ms)

Fig. 8. (A) A sample clip comparison on the (B) DCASE2018 evaluation
dataset between (C) CDur and (D) cATP-SDS. Best viewed in color.

to remove false-positives and connect (or remove) its disjoint
predictions. In contrast, CDur seems to predict onset and offsets
accurately without the need for post-processing. This behavior
is in accord with our previous observation in Table IX. Addi-
tionally, the “dishes” event (a sharp cling sound of a fork hitting
porcelain) is hard to estimate for both models. However, cATP-
SDS predicts dishes as an always present background noise,
meaning that it failed to learn the characteristics of the short
and sharp “dishes” sound. Lastly, we also provide five distinct
samples for the shortest duration events within DCASE2018
(“dishes,” “cat,”“dog,”“speech,”*alarm bell ringing”) in Fig. 9.
These samples further demonstrate that CDur is capable of de-
tecting and accurately predicting short and sporadic events, such
as “alarm bell ringing,” “cat,” and “dishes”. Our second sampled
clip (soundscape_test_unimodal585) is from the URBAN-SED
dataset (see Fig. 10). We compare CDur to a reimplementation
of [7], using our best performing Event-F1 MaxPool CNN model
(Table IT). Note that our reimplementation uses our LMS features
with 50 Hz (20 ms/frame) frame rate, whereas the original work
used 43 Hz (23 ms/frame). At first glance, one can observe that
this dataset is indeed artificial since the spectrogram appears
to contain only the target events, without any other natural
background noises. As this sample shows, the MaxPool CNN
model is indeed capable of sound localization, specifically for
events with a duration of ~ 1.5 s, such as “jackhammer,” “gun
shot” and “children playing”. However, it seems to struggle with
longer events, such as “dog bark,” at which it exhibits a peaking
behavior, chunking the event into small pieces (see orange line).
On the contrary, CDur can predict and localize both short and
long events for this sample. Specifically, MaxPool CNN was
unable to notice the short “engine idling” event (around 800 ms),
yet CDur predicted its presence. We believe that this is due to the
low time-resolution of the MaxPool CNN model (320 ms/frame,
3.125 Hz), which could skip over the presence of short events.
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VII. CONCLUSION

This work proposed CDur, a duration robust sound event
detection CRNN model. CDur aims to be as flexible as possible
in order to be applied across different datasets and scenarios.
Further, we propose a new post-processing method called triple
thresholding, which not only considers frame-level outputs but
also utilizes the clip-level probabilities. Triple thresholding can
be seen to improve Event-F1 performance regarding Event-F1
performance on the DCASE2018 and URBAN-SED datasets.

CDur is then compared to other approaches in terms of
Segment, Event, and Tagging performance. Experiments con-
ducted on the DCASE2017,18 and URBAN-SED datasets im-
ply promising performance. The DCASE2018 results show
that CDur can outperform previous SOTA models in terms of
Tagging- (69.11), Event- (39.42), and Seg-F1 (63.53). Besides,
on the URBAN-SED dataset CDur outperforms supervised
methods in terms of Seg- (64.75) and Tagging-F1 (77.13). A
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Predictions for five samples for each of the shortest duration events (“dishes,” “cat,”“dog,”*‘speech,”“alarm bell ringing”) in DCASE2018. Best viewed

series of ablation experiments reveal the models’ inherent capa-
bility to correctly localize sounds with effective onset and offset
estimation. In our future work, we would like to investigate the
new polyphonic scene detection score (psds) [39] as a metric,
which seems to provide promising insights towards a model’s
duration robustness and overall performance given a specific
scenario.
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