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ABSTRACT

Automated audio captioning (AAC) aims at generating sum-
marizing descriptions for audio clips. Multitudinous concepts
are described in an audio caption, ranging from local informa-
tion such as sound events to global information like acoustic
scenery. Currently, the mainstream paradigm for AAC is the
end-to-end encoder-decoder architecture, expecting the en-
coder to learn all levels of concepts embedded in the audio
automatically. This paper first proposes a topic model for au-
dio descriptions, comprehensively analyzing the hierarchical
audio topics that are commonly covered. We then explore a
transfer learning scheme to access local and global informa-
tion. Two source tasks are identified to respectively represent
local and global information, being Audio Tagging (AT) and
Acoustic Scene Classification (ASC). Experiments are con-
ducted on the AAC benchmark dataset Clotho and Audiocaps,
amounting to a vast increase in all eight metrics with topic
transfer learning. Further, it is discovered that local informa-
tion and abstract representation learning are more crucial to
AAC than global information and temporal relationship learn-
ing.

Index Terms— Audio captioning, transfer learning, au-
dio processing, audio tagging

1. INTRODUCTION

Automated audio captioning (AAC) is a cross-modal task
bridging audio signal processing and natural language pro-
cessing (NLP) [1, 2]. The introduction of AAC to the De-
tection and Classification of Acoustic Scenes and Events
(DCASE) 2020 challenge sparked interest from researchers [3,
4, 5, 6]. AAC is particularly interesting yet challenging as
the audio captions describe multitudinous auditory elements.
Compared with visual perception, where the objects are de-
fined by its shape, color, size, and its spatial position to other
objects, auditory perception concerns with sound events and
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their corresponding physical properties, temporal informa-
tion of these sound events, and their relationship with other
events, and high-level knowledge-rich auditory understand-
ing. For instance, a typical caption from the DCASE bench-
mark dataset Clotho [7] “people talking in a small and empty
room” describes the sound event “people talking” and its
global scene “in a room”, where high-level auditory knowl-
edge is processed to infer that the room is small and empty, a
visual description.

It should be noted that the current mainstream training
paradigm of AAC is the end-to-end encoder-decoder frame-
work, where the captions are provided as the only supervi-
sion signal to the audio content. An audio encoder first ex-
tracts an abstract embedding from an input audio clip in the
encoder-decoder framework. Then the text decoder predicts
the caption according to the audio embedding. To encode all
the above-mentioned multifaceted information from an audio
clip without explicit supervision increases the difficulty for
AAC encoder training. Therefore, a hierarchical structure of
the abstract audio topics commonly described in audio cap-
tions is crucial.

Stemming from auditory perception and combined with
the captions provided in the currently available AAC datasets,
we propose the following audio topic model for AAC:

1. Local audio topics: (a) Sound events, which can be de-
scribed by the sounding object entity (“a male”), the
verbs that make the sound (“talk”), the physical prop-
erties of the sound (“loud”).

2. Global audio topics: (a) Acoustic scenes, such as an
exact scene location description (“downtown”), and an
abstract description (“in the distance”). (b) High-level
abstraction, including content inference (“at a confer-
ence”), and affect expression (“annoyingly”).

We explore a transfer learning method to address local
and global information based on such a topic model. Two
source tasks are identified to represent local and global infor-
mation, being Audio Tagging (AT) and Acoustic Scene Clas-
sification (ASC). ASC is an environmental sound recognition
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Fig. 1. Our proposed transfer learning for automated audio captioning. In the first stage, a tagging system is pretrained by ASC
or AT. Then the embedding extractor part of the pretrained tagging system is used to initialize the audio encoder. In the second
stage, the audio encoder is adapted to the target task (AAC), and the entire captioning system is trained end-to-end.

task, attempting to classify global audio representations into
predefined scene categories, e.g., park, shopping mall. On
the other hand, AT aims at identifying specific sound events
present in an audio recording. We propose pretraining the au-
dio encoder on ASC and AT tasks and then transferring the
parameters to the AAC encoder, as shown in Section 2. Since
AAC concerns both abstract representations and the sound
events’ temporal relationships, different pretraining backbone
networks are explored. Experiments in Section 3 are con-
ducted on the benchmark AAC dataset Clotho and Audiocaps,
the largest AAC dataset by far. A consistent performance gain
is obtained over the eight language similarity metrics on both
datasets, displayed in Section 4.

2. TRANSFER LEARNING FOR AAC

We propose a transfer learning approach for a more effective
AAC audio encoder. For the following definitions, assume
that X ∈ RT×D is an input feature with T frames and D
Mel filters. The supervised pretraining tasks used in this pa-
per are modeled as F : X 7→ y, where y differs for each
respective task. For our research, we experiment with two
different source tasks, being audio tagging (AT) Ftag : X 7→
ytag,ytag ∈ {0, 1}E and acoustic scene classification (ASC)
Fasc : X 7→ yasc, yasc ∈ {1, . . . , E}.

The process of our proposed transfer learning for AAC
is illustrated in Figure 1. The backbone encoder architecture
comprises an embedding extractor, followed by a temporal
pooling layer and an output layer. The embedding extrac-
tor consists of several convolution blocks to extract mid-level
embedding features from the audio input. After pretraining,
the parameters of the AT / ASC system are transferred to the
AAC audio encoder. We experiment with a CNN and a CRNN
pretraining encoder network on both the AT and ASC tasks.
We intend to explore whether abstract embeddings (CNN) or
temporal information (CRNN) have a more significant impact
on AAC performance.

AAC Model Architecture Regarding the audio caption
framework, we adopt a temporal attentional encoder-decoder
architecture for AAC. The overview of our system is pre-
sented in Figure 2. It consists of an audio encoder which ex-
tracts feature embedding sequence from a Log Mel Spectro-
gram (LMS) input and a text decoder to output caption. The
whole system is trained by the standard cross-entropy loss be-
tween the predicted caption and ground truth annotation.

Audio encoder As mentioned previously, two model ar-
chitectures are adopted as the audio encoder for comparison
purposes: a 10-layer CNN (CNN10) and a 5-layer CRNN
(CRNN5). CNN10 shows superior performance for time-
invariant audio tagging [8], while CRNN5 is reported to be
effective in duration robust sound event detection [9]. For ei-
ther architecture, the audio encoder reads an LMS input with
T frames and outputs a sequence of embeddings {et}T

?

t=1 (T ?

may not equal T due to temporal subsampling). The detailed
structure of CNN10 and CRNN5 can be found in [8] and [9].

Text decoder We adopt a standard shallow single layer
unidirectional GRU as the text decoder. At decoding timestep
n, the hidden state hn is updated depending on the previous
timestep hn−1, the current input word wn and a context vec-
tor cn as:

hn = GRU([cn;WE(wn)],hn−1)

where WE denotes the word embedding layer. A standard
temporal attention mechanism [10] is utilized to obtain cn.
The attention weights {αn,t}T

?

t=1 are calculated by aligning
hn−1 with the timesteps of audio embeddings:

αn,t =
exp

(
score(hn−1, et)

)∑T?

t=1 exp
(
score(hn−1, et)

) (1)

cn =

T?∑
t=1

αn,tet (2)

We use the concat scoring function [11] for the alignment.
After a fully connected output layer and a softmax function,
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Fig. 2. The illustration of the encoder-decoder AAC system. The audio encoder outputs a sequence of feature embeddings
e1, e2, · · · , eT? from a Log Mel Spectrogram input with T frames. The attentional GRU text decoder updates its hidden state
hn based on the previous hidden hn−1, the current word wn and a context vector cn, which is a weighted combination of the
embedding sequence.

the output word probabilities are obtained. The word with the
highest probability is selected as the output. This process is
repeated until an end-of-sentence (EOS) token is reached.

3. EXPERIMENTAL SETUP

3.1. Datasets

Regarding the pretraining target data source, we use AudioSet
for AT and DCASE for ASC. For the target AAC task, we
conduct our experiments on Clotho dataset [7] and Audio-
caps [12].

AudioSet [13] is a large-scale manually-annotated sound
event dataset. Each audio clip has a duration of up to ten
seconds, containing at least one sound event label. AudioSet
consists of a 527 event ontology, encompassing most every-
day sounds. Two training sets are provided: a balanced (60
hours, 20k+ clips) and an unbalanced (5000 hours, 1.85 mil-
lion clips) one.

DCASE We incorporate the development sets from ASC
task (Task1A) of DCASE2019 and DCASE2020 challenges.
DCASE2019 contains 26 hours of audio recorded in urban
scene environments, and DCASE2020 comprises 39 hours,
totaling 65 hours of data. To avoid a bias due to different data
sizes, we randomly selected 60 hours of data from those two
datasets, matching the balanced AudioSet size.

Clotho [7] is a newly published AAC benchmark dataset
used for the DCASE2020 task 6 challenge. There are 2893
audio clips (18 hours) in the development set and 1043 clips
(7 hours) in the evaluation set, ranging evenly from 15 to 30
seconds in duration. Each audio clip has five corresponding
caption annotations.

Audiocaps [12] is by far the largest AAC dataset, con-
sisting of 46k audio clips (≈ 127 hours) collected from the
AudioSet dataset. One human-annotated caption is provided
for the training dataset while five captions for validation and
test sets, respectively.

3.2. System configuration

Standard 64-dimensional LMS features are extracted every
20 ms with a Hann window size of 40 ms. For both pre-
training and AAC fine-tuning, 90% of the development set
is split as the training subset, and the rest 10% is used for
cross-validation. The initial learning rates are set to 10−3 and
5 × 10−4, batch sizes to 64 and 32 for AT / ASC pretrain-
ing and AAC fine-tuning, respectively. During pretraining,
early stopping is utilized, where the model with the best per-
formance on the validation set is chosen for encoder initial-
ization. Training is uniformly done using Adam optimiza-
tion [14]. The standard caption metrics (BLEU@1-4 [15],
ROUGE [16], METEOR [17], CIDEr [18], and SPICE [19])
are used for evaluation. Beam search with a beam size of 3 is
adopted during evaluation to enhance performance.

4. RESULTS AND DISCUSSION

Table 1 presents our results on Clotho and Audiocaps datasets,
with and without encoder pretraining, respectively elaborat-
ing local (AT) and global (ASC) information. The majority
of the pretraining approaches, except for CRNN5 pretrain-
ing on the ASC task, enhance the performance compared
with training from scratch. This indicates that a caption-
ing model embeds different information levels and encoder
pretraining on relevant tasks can help the model attend to
further details. We further compare our approach against the
best-published results, i.e., an encoder pretraining method by
keyword prediction (KWP) [4] achieves the best single model
performance on Clotho evaluation set. In contrast, a multi-
scale encoder with pretrained AudioSet VGGish features [12]
is the state-of-the-art (SOTA) performance on Audiocaps
with only audio inputs. Our CNN10 encoder pretraining
on AT (unbalanced) achieves the best result on Clotho and
Audiocaps, outperforming previous work.
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Table 1. Performance on the Clotho and Audiocaps evaluation set of different pretraining settings. KWP, ASC, AT denote key-
word prediction, acoustic scene classification and audio tagging respectively. KWP achieves the best single model performance
on Clotho evaluation set, while VGG features is the best AudioCaps model. BN represents the N-gram BLEU score.

Data Encoder Pretrain B1 B2 B3 B4 ROUGEL CIDEr METEOR SPICE

C
lo

th
o

CNN10 KWP [4] 53.4 34.3 23.0 15.1 35.6 34.6 16.0 10.8

CNN10

from scratch 47.5 27.5 17.6 11.1 31.9 21.3 13.6 8.1
ASC 50.7 30.9 20.1 12.7 33.9 27.5 14.9 9.2

AT (balanced) 53.1 33.1 21.6 13.9 35.5 31.9 16.0 10.4
AT (unbalanced) 55.6 36.3 24.2 15.9 36.8 37.7 16.9 11.5

CRNN5

from scratch 51.0 31.4 20.6 13.5 34.4 28.5 15.0 9.3
ASC 49.5 30.1 19.3 12.0 33.4 25.7 14.5 9.1

AT (balanced) 52.3 32.6 21.4 13.8 34.9 29.9 15.7 10.2
AT (unbalanced) 52.8 33.1 21.7 13.8 35.2 30.1 15.6 10.1

A
ud

io
C

ap
s

Multiscale VGG features [12] 61.4 44.6 31.7 21.9 45.0 59.3 20.3 14.4

CNN10

from scratch 62.1 44.0 30.3 20.5 44.2 52.1 20.6 14.1
ASC 62.7 44.2 30.5 20.7 43.9 54.1 20.5 14.5

AT (balanced) 63.8 46.1 32.3 22.0 45.1 57.8 21.5 15.3
AT (unbalanced) 65.5 47.6 33.5 23.1 46.7 66.0 22.9 16.8

CRNN5

from scratch 61.9 44.5 31.1 21.0 44.6 54.5 20.8 14.6
ASC 60.5 43.2 30.2 21.0 43.3 51.5 19.8 14.1

AT (balanced) 62.9 45.4 32.1 22.6 45.0 60.2 20.7 14.9
AT (unbalanced) 64.1 46.6 33.2 22.8 46.0 60.5 21.5 15.9

Local vs. Global We deliberately choose AT and ASC
tasks to represent local and global audio topics in AAC, cor-
responding to the two pretraining tasks’ characteristics: AT
provides detailed audio event information, while ASC aims
to characterize the environment. Results on both Clotho and
Audiocaps indicate that local audio topics are comparatively
more crucial to a captioning model than global information:
AAC with AT pretraining always outperform ASC pretrain-
ing. In particular, AT pretraining on unbalanced constantly
yields the best performance, amounting to SOTA perfor-
mance on both datasets, regardless of the evaluation metrics.
Even when AT (balanced) and ASC datasets contain approxi-
mately the same amount of data (≈ 60 h), AAC performance
significantly improves when pretraining on AT.

Abstract embedding vs. Temporal information In addi-
tion to local vs global information, we explore whether ab-
stract embeddings (CNN) or temporal information (CRNN)
have a more significant impact. When trained from scratch,
CRNN5 outperforms CNN10 on all metrics; in contrast to
pretraining, CRNN5 brings little improvement for AAC per-
formance. This indicates that AAC prefers CNN10, which
can better recognize the presence of audio events, focusing
less on the temporal relationship of different events. Perfor-
mance improves steadily for all CNN10 models when training
with more data (ASC, balanced, unbalanced). Transferring
knowledge learned via large dataset pretraining (AT unbal-
anced vs. balanced) improves the downstream AAC perfor-
mance significantly, as in other work [8, 20].

5. CONCLUSION

This work investigates concepts commonly described in au-
dio captions, referred to as an audio topic model. Based on
this, a transfer learning scheme is proposed to address the lo-
cal and global information. We compare two pretraining tasks
(ASC and AT) and two audio encoder architectures (CNN10
and CRNN5) to investigate which abstract topic and archi-
tecture are crucial to AAC. The results show that transferring
knowledge from either topic leads to vast performance gain,
leading to SOTA performance on both Clotho and Audiocaps.
It is observed that local information (AT) and abstract em-
beddings (CNN10) are more critical to ACC. We would like
to explore methods like multi-task training to better address
the different topics within a caption for future work. Topic
fusion could also shift from coarse to fine-scale, e.g., sepa-
rately modeling different traits of sound events, relationships,
exact and abstract acoustic scenes, along with the high-level
knowledge-infused abstraction.
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