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ABSTRACT

With the incorporation of pre-training, transfer learning and key-
word input, notable improvement has been made in audio caption-
ing on generating accurate audio event descriptions in recent years.
However, current captioning models tend to generate repetitive and
generic sentences which often contain the most frequent patterns in
the training data. Some works in natural language generation make
an effort to improve the diversity by attending to specific contents
or increasing the generated caption number. However, these ap-
proaches often enhance the diversity with the sacrifice of description
accuracy. In this work, we propose a novel neural conditional cap-
tioning model to balance the diversity and accuracy trade-off. Com-
pared with the statistical condition, the neural condition is the poste-
rior given by a neural discriminator. Given the reference condition,
the captioning model is trained to generate captions with a similar
posterior. The captioning model and the discriminator are trained in
an adversarial way. We evaluate the proposed approach on Clotho
and Audiocaps. The results show that compared with baselines, our
approach can improve the output diversity with the least accuracy
decline.

Index Terms— Audio captioning, conditional generation, ad-
versarial training, diverse caption generation

1. INTRODUCTION

Automatic audio captioning is a challenging task which requires rec-
ognizing and understanding audio contents then summarizing them
with natural language. The summarization may include acoustic
scenes, sound events, sound properties or even high-level abstrac-
tion [1]. It is more related to human processing than structured la-
bel outputs, suitable for automatic content description or intelligent
human-machine interaction applications.

Audio captioning has attracted much attention in recent years.
Researchers aim to enhance the description accuracy by incorporat-
ing techniques like pre-training [2, 3] and keyword indicator [4, 5].
However, like most natural language generation tasks, audio caption-
ing also suffers from the diversity lacking problem. Systems trained
by maximum likelihood estimation (MLE) tend to generate generic
outputs [6], which are often the most common patterns in the training
corpus. In contrast, human annotations may describe the same audio
clip with different styles, i.e., sentence structure, wording choices.

Though some previous work has addressed the diversity prob-
lem, most of which exhibits higher diversity with declined accu-
racy. Some works focus on generating more descriptive, content-
specific outputs [7]. For example, the system is encouraged to out-
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put "a knife” instead of ”a metal object” for a knife-sharpening audio
clip. In this way, when generating the same number of captions for
one audio, the diversity of this audio-caption set (“set-diversity”) is
improved since the description is more detailed. Other works en-
deavor to improve diversity by generating more outputs for a sin-
gle input [8, 9, 10, 11]. Multiple outputs given the same input re-
sult in a higher diversity for an input instance (we call it “instance-
diversity”) compared with the single-output system. For works pro-
moting set-diversity, the captioning accuracy decrease brought by
diversity improvement is in particular dramatic, for example GAN-
based approaches [12, 13].

In audio captioning, Ikawa et al. [14] proposes a system to con-
trol the output specificity, i.e., how specific the generated caption
content is. The sum of the inverse word frequency is used as the sen-
tence specificity indicator. Multiple captions can be generated with
different input specificities. Although such a statistical condition is
straightforward, it only captures the word frequency characteristics,
while patterns like phrase and sentence structures are not considered.
The captioning model may be encouraged to generate word patterns
which are not the most frequent, but still common in the training
corpus (“sub-generic” patterns).

To circumvent the problem of statistical condition, we propose a
new conditional audio captioning system where the condition is pro-
vided by a neural network, which uses a discriminator to tell whether
a caption is generated from a human or a model. The discriminator
and the captioning model are trained in an adversarial way to pe-
nalize generating sub-generic patterns. Compared with GAN-based
methods, we incorporate MLE in training the captioning model to
ensure accuracy. By alternating the condition, we control the de-
scription specificity, thus control the output set-diversity. Experi-
ments are carried out on benchmark datasets, Clotho and Audiocaps.
Compared with model-agnostic approaches and statistical condition
approaches, our system achieves the best diversity-accuracy trade-
off. The output set-diversity can be controlled by the condition with
the least influence on the captioning accuracy.

2. NEURAL CONDITIONAL AUDIO CAPTIONING

In this section, we first give a brief overview of our proposed neural
conditional audio captioning system. Then each part of the system is
described, including an audio encoder, a neural discriminator and a
text decoder. Finally, the adversarial training strategy is introduced.

2.1. System Overview

As shown in Figure 1, our proposed system generates descriptions
with two inputs: an input audio sequence and a condition embed-
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Fig. 1. Proposed neural conditional captioning framework. During training, the text decoder takes the reference condition and the encoded
audio embedding as the input to give word probabilities. During inference, we manually assign the condition and feed to the text decoder to

control the output set-diversity.

ding. The audio encoder transforms the input feature into an embed-
ding sequence {ef}le (T is the embedding sequence length). The
text decoder produces word probabilities based on both the audio
embedding sequence and the condition embedding.

2.2. Audio Encoder

Since features extracted by pre-trained deep neural networks show
better performance and effectiveness in training [5], we adopt
PANNSs [15] as the feature extractor in this work. Specifically, we
use the pre-trained 14-layer convolutional neural network (CNN14).
The feature map before the global pooling layer is taken as the in-
put. Since mean-max pooling is done between convolution blocks in
CNNI14, each frame of the feature sequence represents a short seg-
ment of the original audio clip. We use a three-layer bidirectional
gated recurrent unit (GRU) as the audio encoder to learn temporal
dependencies between these segments. Taking the original audio
signal as the input, the audio encoder comprises a fixed CNN14
feature extractor and a trainable GRU encoder.

2.3. Neural Discriminator

The neural discriminator takes an input audio caption and estimates
its specificity c. The caption can be either a human annotation or a
machine-generated one. We use a two-layer bidirectional long-short
term memory (LSTM) to encode the input caption. The last timestep
hidden is taken as the sequence representation and is transformed to a
single value by a linear layer. Finally, c is obtained after the sigmoid
activation.

2.4. Text Decoder

The input condition embedding c is a weighted sum of two trainable
style embeddings, where the weight is a condition value ¢ € [0, 1].

C = C* €gpecific (]— - C) * €generic

¢ = 0 denotes a generic output style while ¢ = 1 encourages the
system to generate content-specific descriptions. During training,
the reference caption is fed into the neural discriminator to obtain
c. During inference, ¢ is manually assigned to generate descriptions
with corresponding styles (generic or specific).
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We utilize a unidirectional single layer GRU as the text decoder
to estimate the word probabilities given the audio embedding se-
quence {e{‘}thl and c. Attention mechanism [16] is adopted to
aggregate {e;' }7_,. At each timestep n, the hidden state is updated
depending on the input word w,,, aggregated audio embedding € 4
and c:

&4 = Attention (hn,l, {ef}f:1>

h,, = GRU([&4; WE(wn); c], hn_1)

o, = Linear(h,,)

The word embedding layer WE transforms w,, into a continuous vec-
tor. Finally a linear layer outputs the probability vector o,, € RV
of the current timestep, where V is the vocabulary.

2.5. Adversarial Training

Since we utilize a neural network to provide the condition ¢, labels
are required for training the neural discriminator. Based on the ob-
servation that system outputs are often generic descriptions while
human annotations are generally more diverse, we use such intuitive
labels: human annotations are positive samples while system outputs
are negative ones. Therefore, ¢ of an input caption is the posterior
given by the discriminator. It can be seen as a “human-like” score
which measures the extent to which the caption resembles human
annotations.

The encoder-decoder captioning network and the discriminator
are trained in an adversarial way. During training, the following
two stages are carried out alternatively. In the first stage, only the
captioning model parameters are updated while the discriminator is
fixed. The captioning model estimates the word probabilities at each
timestep with the audio input .4 and the reference specificity c. Then
the standard cross entropy (CE) loss is calculated as follows:

c = Dis ({wn}gzl)

{ﬁn}ﬁ;l = Dec (Enc(A), ¢)

Lcg = Z —log (pn (wn))

n=1

where Enc, Dec and Dis denote the encoder, decoder and discrim-
inator, respectively. In addition to CE loss, an extra condition loss
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Fig. 2. The accuracy-diversity curve on Clotho.

Lcondition 18 added to encourage the captioning model to generate de-
scriptions with the corresponding specificity. It is the binary cross
entropy loss between the decoded caption specificity ¢ and c. The
total captioning loss is the weighted sum of Lcg and Leondition:

¢ =Dis(§) § = argmaxp(s)
s

Lecondition = ClOg(é) + (]. - C) IOg(]. — é)
Lcaplion = »CCE + )\»Ccondilion

where § = {4, }2_; is the model generated caption and ) is a hy-
perparameter. We use the reparameterization trick in the greedy de-
coding process to ensure the network can be trained by backpropa-
gation.

In the second stage, the captioning network is fixed while the
discriminator is trained on both human annotations and the caption-
ing network outputs. For an input sentence s, the discriminator train-
ing loss is calculated as:

¢ = Dis(s)
L discriminator = Yy 10g(0) + (1 - y) IOg(l - C)

where the label y = 1 if s is a human annotation, otherwise y = 0.

3. EXPERIMENTAL SETUP

3.1. Datasets

Experiments are conducted on benchmark audio captioning datasets,
Clotho [17] and Audiocaps [18]. The latest version 2.1 of Clotho is
used, containing about 6k audio clips. Audiocaps contains about 50k
audio clips. We use the official training, validation and testing splits
for both datasets.

3.2. System Configuration

We follow the same configuration of CNN14 in PANNs [15] to ex-
tract audio features. During the captioning model training, special
tokens <bos> and <eos> are added to the beginning and the end
of each caption. A baseline sequence-to-sequence captioning model
without the condition input is trained for 25 epochs with a maximum
learning rate of 5x 10~*. The discriminator is also pre-trained on the
mixture of the baseline model outputs and human annotations. Then
the neural conditional model is initialized by the baseline model pa-
rameters and trained for 20 epochs with a maximum learning rate of
2x107%. In the first 15 epochs, only CE loss is used (A = 0) and the
discriminator is fixed. Then the whole model is trained and A is set
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Fig. 3. The accuracy-diversity curve on Audiocaps.

to 5 x 1075 for the rest five epochs. During both the baseline model
and the neural conditional model training, the learning rate linearly
warms up to the maximum value in é of the total iterations and then
exponentially decayed to 5 x 10~7. We use stochastic weight aver-
age [19] so that the model parameters from the last five epochs are
averaged for evaluation.

3.3. Evaluation Metrics

The evaluation is conducted from two aspects: accuracy and diver-
sity. Standard metrics including BLEU,.4 [20], ROUGE., [21], ME-
TEOR [22], CIDEr [23] and SPICE [24] are used for evaluating the
captioning accuracy. SPIDEr, the mean of CIDEr and SPICE, is
taken as an overall accuracy indicator since it relies on both n-gram
and semantic similarities. Following previous works [7, 8], we eval-
uate the diversity by distinct-1, distinct-2 and Self-BLEU [25]. The
vocabulary size of the output captions is also calculated to measure
diversity. For these diversity metrics, a higher value indicates bet-
ter diversity except self-BLEU. Among them we choose Self-BLEU
as the representative because it measures the {1-4}-gram overlaps
between generated captions while distinct-1 and distinct-2 only con-
sider unigrams and bigrams.

4. RESULTS AND ANALYSIS

4.1. Comparison with Baselines

We first compare our proposed neural condition approach with sev-
eral baselines: a) model-agnostic approaches, including beam search
and diverse beam search [9]; b) statistical condition [ 14]. Each com-
pared method is independently evaluated by diversity and accuracy
metrics. For a fair comparison, we use beam search with a beam size
of 5 in all approaches. Results from one beam form an output set. In
diverse beam search, the 1-best results of each group form an output
set. For statistical and the proposed neural condition, each output set
contains results produced by one input condition.

Results are shown in Figure 2 and Figure 3. We use (1 - Self-
BLEU) as the diversity indicator in the curve so that higher values
denote better diversity. Generated captions from different beams
in beam search show little variance in diversity while the accuracy
slightly degrades from the first beam to the last beam. Output cap-
tions from diverse beam search are much more diverse than other
approaches. However, better diversity is achieved with the sacrifice
of accuracy. When generating captions for the current group, it pe-
nalizes words which have appeared in previous groups. However,
these words are often more accurate. This indicates that previous
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Table 1. Detailed accuracy and diversity results of the proposed approach with different input ¢ on Clotho. “# Vocabulary” denotes the output

vocabulary size. For all metrics except Self-BLEU, higher is better.

B Accuracy Metrics Diversity Metrics
BLEU; ROUGE_., METEOR CIDEr SPICE || # Vocabulary distinct-1  distinct-2 ~ Self-BLEU

0.0 16.5 38.2 17.1 37.0 11.6 276 .026 .07 .93

0.2 16.8 38.2 17.2 37.8 11.7 302 .028 .078 92

0.4 16.8 38.4 17.2 39.0 12.0 335 .031 .084 91

0.6 16.4 38.1 17.1 38.6 11.9 383 .035 .095 .89

0.8 159 37.7 17.2 384 12.1 437 .039 11 .87

1.0 154 37.5 17.1 37.9 12.1 466 .041 A2 .86

Table 2. Examples of neural conditional captioning model generated captions with different input c.
filename Clatter:wav [ Deutz-Tractor-Engine-1972.wav
c Generated Caption

0.0 a hard object is being hit on a hard surface a motor is running and then the engine revs
0.4 a person is hammering on a wooden door a diesel engine is idling and then the engine revs
0.8 a wooden object is being hit against a hard surface a large diesel engine is idling and then the gears
1.0 someone is walking on a wooden door with a windshield | a large diesel engine is idling and the engine is being revved up

works on promoting the output instance-diversity cannot generate
accurate captions with the increase of the output set-diversity.

Captions generated by the statistical conditional model perform
the worst in both accuracy and diversity. We find captions generated
with high statistical conditions mostly contain repeated meaningless
words (e.g., “and”, “is”, “a”), resulting in low accuracy and diver-
sity. In contrast, our proposed neural conditional captioning model
is able to control the output diversity without sacrificing accuracy.
On Clotho, the diversity variance of neural conditional outputs is
similar to that of diverse beam search while the captioning accuracy
almost keeps unchanged. On Audiocaps, the captioning accuracy
slightly drops when ¢ = 1.0 but the degradation is still the least
when achieving the same diversity score. Clotho contains five refer-
ence captions (possibly with different styles) for each training audio
clip while Audiocaps contains one. This may lead to it being more
difficult for models to learn the mapping from c to output styles on
Audiocaps.

4.2. Accuracy-diversity Trade-off

To analyze the effect of different input c on the generated captions,
we list the detailed accuracy and diversity results on Clotho with dif-
ferent input c in Table 1. All diversity metrics improve with higher
c. Although the variance of the accuracy metrics is slight, we can
find the trend that a higher c results in lower BLEU, ROUGE,, and
METEOR but higher SPICE. It indicates that captions generated by
higher ¢ have fewer n-gram overlaps with the reference but the se-
mantic level accuracy (objects, attributes and relationships) is better.
With a high input ¢, The model is encouraged to generate n-grams
different from those in the reference while keeping the semantic con-
tents the same. ¢ = 0.4 achieves the highest CIDEr, indicating a
moderate c results in the best TF-IDF-based similarity. Results on
Audiocaps show a similar trend so they are not listed here.

To give an intuitive result, we show an example of generated
captions with different input ¢ on the same audio in Clotho evalua-
tion split in Table 2. High c results in more detailed descriptions: “a
wooden door” instead of “a hard surface” and the additional object
“windshield”. Therefore the output set-diversity improves. In con-
trast, low ¢ leads to generic descriptions which are probable to be
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correct but contain less information.

5. CONCLUSION

This paper aims to control the audio captioning output set-diversity.
A neural conditional captioning model is proposed to generate
generic or specific outputs with different condition signal c¢. During
training, the reference condition is provided by a neural discrimina-
tor, which is trained with the captioning model in an adversarial way.
Experiments on Clotho and Audiocaps show that the proposed ap-
proach can generate captions with different set-diversity. Compared
with beam search, diverse beam search and statistical condition, the
neural conditional approach has the least influence on accuracy to
generate outputs with the same diversity. Detailed accuracy metrics
also show that captions with a higher input ¢ have fewer n-gram
overlaps with the reference but contain correct audio contents.
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