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Abstract
Voice activity detection (VAD) is an essential pre-processing
component for speech-related tasks such as automatic speech
recognition (ASR). Traditional VAD systems require strong
frame-level supervision for training, inhibiting their perfor-
mance in real-world test scenarios. Previously, the general-
purpose VAD (GPVAD) framework has been proposed to en-
hance noise robustness significantly. However, GPVAD models
are comparatively large and only work for offline evaluation.
This work proposes the use of a knowledge distillation frame-
work, where a (large, offline) teacher model provides frame-
level supervision to a (light, online) student model. Our ex-
periments verify that our proposed lightweight student models
outperform GPVAD on all test sets, including clean, synthetic
and real-world scenarios. Our smallest student model only uses
2.2% of the parameters and 15.9% duration cost of our teacher
model for inference when evaluated on a Raspberry Pi.
Index Terms: Voice activity detection, Sound event detec-
tion, teacher-student learning, convolutional recurrent neural
networks, lightweight voice activity detection

1. Introduction
Voice activity detection (VAD) aims to distinguish speech from
non-speech segments in an audio stream [1]. A robust VAD
system should be able to differentiate speech segments in au-
dio from non-speech ones, including silence, non-speech hu-
man sounds, environmental sounds and all other possible noises
in the wild. VAD serves as a crucial pre-processing step for
speech and signal processing tasks such as automatic speech
recognition (ASR), speaker verification (SV) and text-to-speech
synthesis (TTS). Unsupervised VAD was once popular in re-
search [2, 3, 4] due to no requirements for labeled data. With
the development of deep learning, deep neural networks (DNN),
especially convolutional neural networks (CNN) [5, 6, 7] and
recurrent neural networks (RNN) [8, 9, 10] have seen success-
ful applications in VAD. Recent works in VAD endeavor to im-
prove the robustness towards noise and domain mismatch [11,
12, 13, 14, 15] where the training data are noisy datasets syn-
thesized by corrupting clean speech with foreground or back-
ground noise as well as end-to-end integration with ASR [16].

Supervised VAD approaches require frame-level labels (the
presence of speech in each frame), which are obtained by an
alignment given by a hidden Markov model (HMM) trained
on clean speech data. Traditional supervised VAD methods
are limited by the availability of transcribed ASR data, as well
as incapable of being trained on real-world data with unknown
noises.
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One possible alternative is to manually label the presence
of speech in real-world datasets, discarding the ASR pipeline.
However, the expensive cost of labor restricts this approach
from being used on large datasets. Weakly-supervised training,
which only requires clip-level labels, has been recently explored
in VAD [17, 18]. Such VAD models trained with clip-level su-
pervision signals are referred to as general-purpose VAD (GP-
VAD) framework for its robustness towards sounds in the wild.

While the GPVAD framework performs well in real-world
evaluation scenarios, its performance on clean and synthetic
noise scenarios is sub-par to traditional fully supervised VAD
approaches. We hypothesize that this behavior inherently
stems not only from the label quality (i.e., incorrect clip-level
“speech” labels) of the supervision signal, but rather from its
position (no access to frame-level supervision). In order to ame-
liorate this discrepancy between GPVAD and traditional VAD,
we use teacher-student learning to provide frame-level supervi-
sion to a student from a weakly-supervised teacher.

Another problem with GPVAD is the parameter redundancy
given the fact that lighter weight and shorter inference duration
are crucial for pre-processing tasks like VAD. It is shown in
previous work [17] that the framework trained with as many as
527 sound event labels (GPV-F) largely outperforms the naive
binary classifier. However, it could be possible that detailed
knowledge about each noise class is not all necessary since
VAD models only need to discriminate speech from non-speech
signals. In other words, GPV-F contains redundant parameters
for VAD due to the decrease of the target size (527 → 2). A
commonly-used method to distill knowledge from deep mod-
els into small models is teacher-student training [19, 20, 21],
which prevents small models from under-fitting on large train-
ing datasets.

In this paper, we propose using teacher-student learning to
develop several lightweight models for real-world VAD appli-
cations, amounting to a small footprint (lower than 1 Megabyte
on disk). Our experiments verify that our proposed lightweight
student models outperform GPVAD on all test sets, including
clean, synthetic and real-world scenarios. It should also be
noted that the previously used GPVAD framework is an offline
model, meaning that an entire clip needs to be fed to the model
before a prediction can be computed. We eliminate the depen-
dency of output probabilities on future inputs by alternating the
architecture, resulting in an online GPVAD framework. Our
smallest student model only uses 2.2% of the parameters and
15.6% duration cost of our teacher model for inference when
evaluated on a Raspberry Pi.

The paper is organized as follows. Section 2 introduces the
proposed teacher-student approach. The experimental settings
are given in Section 3. In Section 4 results and analysis are
presented. Section 5 concludes the paper.
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Figure 1: The proposed Teacher-Student (TS) framework. First, a teacher is trained with clip-level supervision. After training, the
teacher provides frame-level supervision to a student model. The knowledge transfer also reduces the amount of learnable labels from
527 to 2. The trained student model is then evaluated.

2. Teacher-student learning with GPVAD
Our teacher-student (TS) framework, depicted in Figure 1, is
based on the previously introduced GPVAD paradigm [17].
First, the GPVAD teacher T model is trained with clip-level
supervision on a sound event detection dataset (here AudioSet)
to discern between sound events. The teacher has two outputs: a
directly trainable clip-level sound event detector and an untrain-
able frame-level detector. The frame-level sound event detector
is indirectly trained via back-propagation from the loss between
the clip-level prediction and the ground truth [17, 22, 23].

Then, for a given input audio clip, T estimates the frame
probability yTt (e) for each sound event e. The estimations are
taken as soft-labels to provide frame-level supervision to a stu-
dent S. Note that T is trained to predict 527 different events
(one of which is speech) while S is trained as a binary clas-
sifier to discriminate speech and non-speech. Therefore, event
probabilities predicted by T are transformed to binary labels for
student training.

Since AudioSet contains multiple ambiguous speech-
related event labels, student S is trained on a distilled speech
label set S(Speech) containing the parent label “Speech” and
all its (seven) children within the AudioSet ontology, e.g., Male
speech, Conversation, Child speech. Taking the label set con-
taining all events as E, the student training labels ŷSt are then
defined as:

S(Speech) = {Speech, Conversation, · · · }

ŷSt (Speech) = max
e∈S(Speech)

(yTt (e))

ŷSt (non-Speech) = max
e∈E\S(Speech)

(yTt (e))

(1)

We use the maximal probability across speech-related
events as the representative for the “Speech” class and the max-
imal probability across all non-speech events as the representa-
tive for the “non-Speech” class, since the goal is to teach stu-
dents to best discriminate speech and non-speech events. Note
that, ŷSt (Speech) + ŷSt (non-Speech) 6= 1, which enables the
student model to predict speech and noise simultaneously. The
student is trained by frame-level binary cross entropy (BCE)
loss between the prediction ySt and ground truth ŷSt :

L =
1

T

T∑
t=1

ySt log(ŷSt ) + (1− ySt ) log(1− ŷSt ) (2)

During inference, ySt (non-Speech) is neglected while only
ySt (Speech) is taken to predict speech segments.

Teacher The GPVAD teacher T model is a five-layer CRNN
model, also known as CDur [23], has achieved competitive per-
formance in SED. CNN recognizes Time-frequency patterns in
spectrograms while the bidirectional gated linear unit (BiGRU)
is attached to enhance the model’s ability to temporally localize
sound events. The model architecture can be seen in Table 1.

Table 1: The detailed configuration of the teacher model. T de-
notes the frame number of the input feature. Each convolution
block contains a batch normalization layer, a 2-dimensional
convolution layer and a leaky ReLU activation layer with a neg-
ative slope of 0.1. All convolution layers use a 3 × 3 filter
with zero padding. Each subsampling (Sub) block is denoted
as [t ↓ f], representing a subsampling by factor t, f in time
and frequency dimensions respectively. LP-norm subsampling
with p = 4 is used as default. c represents the number of output
labels. All trainable blocks are highlighted in bold.

Layer # Params Output Size
Conv Block1 290 (32, T, 64)
Sub1 [2 ↓ 4] - (32, T

2
, 64)

Conv Block2 36,928 (128, T
2
, 16)

Conv Block3 147,712 (128, T
2
, 16)

Sub2 [2 ↓ 4] - (128, T
4
, 4)

Conv Block4 147,712 (128, T
4
, 4)

Conv Block5 147,712 (128, T
4
, 4)

Sub3 [1 ↓ 4] - (128, T
4
, 1)

Dropout (0.3) - (128, T
4
, 1)

Reshape - (T
4
, 128)

BiGRU 198,144 (T
4
, 256)

Linear 135,439 (T
4
, c)

Upsample - (T, c)∑
813,937 -

Student While the teacher requires a large number of parame-
ters to sufficiently model 527 sound events, the students are only
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tasked to learn a binary classification problem, greatly reducing
their necessary amount of parameters. In order to decrease the
parameter size and enable online evaluation, we focus on two
major components. First, since most parameters of the teacher
model lie within its convolution layers, we remove the layers
containing the most parameters i.e., ultimate and penultimate
(4,5) Conv blocks. Second, the bidirectional GRU inhibits on-
line evaluation, since it requires access to future and past input
frames. A standard unidirectional GRU replaces it. We there-
fore propose three model architectures with different channel
numbers, denoted as CRNN-Ck, k = 8, 16, 32, which can be
seen in Table 2. Note that an average pooling layer is added
after the last convolution to reduce the frequency dimension to
one.

Though the number of parameters greatly differs between
our teacher and student models, we hypothesize that the result-
ing student models should be able to perform as well as the
teacher in terms of speech prediction.

Table 2: Parameters of CRNN3 student models. The channel
numbers of each convolution block and the GRU hidden unit
are listed. A comparison between the parameters sizes against
the teacher model is also provided. Note that upsampling is
only used during training to match the input time-resolution.

CRNN3-C8 CRNN3-C16 CRNN3-C32
Conv Block1 (8, T, 64) (16, T, 64) (32, T, 64)
Sub1 [2 ↓ 4] - - -
Conv Block2 (32, T

2
, 16) (64, T

2
, 16) (128, T

2
, 16)

Sub2 [2 ↓ 4] - - -
Conv Block3 (32, T

4
, 4) (64, T

4
, 4) (128, T

4
, 4)

Dropout (0.3) (32, T
4
, 4) (64, T

4
, 4) (128, T

4
, 4)

Pool Freq (32, T
4

) (64, T
4

) (128, T
4

)
Reshape (T

4
, 32) (T

4
, 64) (T

4
, 128)

GRU (T
4
, 32) (T

4
, 64) (T

4
, 128)

Linear (T
4
, 2) (T

4
, 2) (T

4
, 2)

(Upsample) (T, 2) (T, 2) (T, 2)
# Params 18,076 71,476 284,260
% Params 2.2% 8.7% 35%
Size (kb) 76 284 1116

3. Experiments
Datasets In this work, the training dataset is exclusively the
balanced subset of AudioSet, identical to the GPVAD train-
ing set in our previous work [17]. The dataset contains about
21,000 Youtube audio clips with a maximum duration of 10 sec-
onds. Each audio clip is annotated by one or more event labels
from overall 527 sound event categories. Compared with tra-
ditional supervised VAD training datasets, this dataset contains
unpredictable and unknown, real-world noise. The evaluation
datasets are consistent with the previous work [17], including
the clean Aurora 4 [24], a synthetically noised Aurora 4 and the
real-world DCASE18 dataset [25].

Feature In this work, 64-dimensional log mel power spectro-
grams (LMS) are utilized as audio features using librosa [26].
For each sample, LMS is extracted by a 2048 point short time
Fourier transform with a Hann window of 40 ms and 20 ms
shift. Since audio clips in AudioSet are variable in duration, all

features are padded to the longest sample length in a mini-batch
while training. During evaluation and inference, each audio clip
is fed to the model independently without padding.

Training The dataset is split into a 90% training subset and
a 10% validation subset. All student models are trained for
at most 300 epochs with an early stop strategy of ten epochs.
Training is done using Adam optimization algorithm with a
starting learning rate of 1e-3. The neural networks are imple-
mented in the PyTorch [27] framework.

Post-processing Post-processing is applied to obtain hard
predictions from the output probabilities. In offline VAD, post-
processing like double threshold can help smoothen predicted
segments and enhance performance [22]. However, in an online
setting double threshold cannot be used, thus naive thresholding
with a threshold φ = 0.3 is adopted as the default in this work.

Evaluation Metrics Following previous work, our model is
evaluated from both frame-level and segment-level. For frame-
level evaluation, macro and micro F1 scores (F1-macro and F1-
micro), area under the curve (AUC) and frame error rate (FER)
are adopted. For segment-level evaluation, we choose event-
based F1-score [28] (Event-F1), which is commonly utilized in
sound event detection evaluation, attaching importance to the
prediction accuracy of speech activity onsets and offsets. Dis-
joint predicted speech segments are penalized by Event-F1. A
t-collar of 200 ms is set to allow an onset prediction tolerance.
Besides, a 20% duration discrepancy between the reference and
the prediction is permitted.

4. Results
4.1. Teacher student training

We first compare our TS framework performance with the
previous weakly-supervised pipeline, the teacher (GPV-F) and
strongly-supervised VAD-C [17], listed in Table 3. In this ex-
periment we only focus on the largest student model, CRNN3-
C32. Since we change the post-processing method, GPV-F and
VAD-C are re-evaluated with naive thresholding. It is shown
that the student model significantly outperforms the teacher
model on all metrics (e.g., event-F1 56.47→ 72.61 on the clean
Aurora 4), indicating the importance of frame-level supervision.
The performance gap between weakly- and strongly-supervised
models is remarkably reduced in terms of AUC. With proper
online post-processing methods, the performance of the GP-
VAD framework can be further improved. It should be noted
that pseudo labels for training inevitably contain more errors
compared with traditional HMM-aligned labels. However, the
frame-level supervision leads to impressive performance en-
hancement. We assume that the teacher model learns the pattern
of speech occurrence from clip-level labels while the student
model’s ability to detect speech on- and offsets is inherently
improved by frame-level supervision.

To give an intuitive visualization of speech localization per-
formance, we randomly choose two samples from the clean test
set Aurora 4. The ground-truth and frame-level probabilities are
shown in Figure 2. It is shown that in terms of the speech bound-
ary, CRNN3-C32 performs much better than GPV-F. In the top
example, GPV-F predicts two short pauses within the second
speech segment ground truth while in the bottom one, the si-
lence segment at around the 8th second predicted by GPV-F is
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Table 3: VAD results of strongly-supervised VAD-C, weakly-supervised GPV-F and the largest student CRNN3-C32. Bold marks the
best results for each respective datasets.

Testset Model Metric
F1-macro (%) F1-micro (%) AUC (%) FER (%) Event-F1 (%)

Clean
VAD-C 97.20 97.88 99.79 2.12 82.35

GPV-F (Teacher) 93.84 95.10 98.83 4.90 56.47
CRNN3-C32 95.59 96.56 99.29 3.44 72.61

Synthetic
VAD-C 87.59 91.02 96.90 8.98 43.99

GPV-F (Teacher) 79.52 81.52 95.11 18.48 18.98
CRNN3-C32 83.77 85.92 96.58 14.08 23.16

Real
VAD-C 77.03 77.20 87.15 22.80 29.7

GPV-F (Teacher) 83.66 84.77 91.63 15.23 37.66
CRNN3-C32 85.87 86.68 93.64 13.32 44.91

Figure 2: Frame wise speech probabilities for two clips
randomly sampled from Aurora 4. The threshold for post-
processing is also depicted. The red boxes indicate the cases
where GPV-F fails to give accurate segment boundaries.

much longer than the ground truth. In comparison, the frame-
level trained student model CRNN3-C32 is capable of predict-
ing accurate speech and silence boundaries.

4.2. Comparison between student models

Table 4 lists the performance of three student models with dif-
ferent channels. For simplicity, we only list AUC and event-F1
on the real-world test set DCASE18. In teacher-student learn-
ing based knowledge distillation, the student performance often
degrades with fewer parameters. However, such a phenomenon
is not observed in our proposed students: The performance gap
between different students is minimal. This validates our as-
sumption that large models contain redundant knowledge on
different noise categories. Our lightweight student models dis-
till the knowledge most correlated with speech modeling from
the teacher.

Table 4: Results of different students on the real-world test set
DCASE18.

Model AUC (%) Event-F1 (%)
CRNN3-C32 93.64 44.91
CRNN3-C16 93.14 44.55
CRNN3-C8 93.53 45.64

4.3. Model size and inference speed

To compare the computation cost of different models, we test
their average inference speed. The test inputs are all 10 second
audio clips. The results are presented in Table 5. Our small-
est CRNN-C8 only contains 2.7% parameters of GPV-F, with
a size of 76 kilobytes on disk. It is lightweight enough to be
deployed on embedded systems conveniently, which is crucial
for pre-processing techniques like VAD. As Table 5 shows, the
inference time on Raspberry Pi is significantly reduced with the
decrease of the model size. CRNN3-C8 requires only a 15.6%
duration cost of GPV-F for inference, making it capable for low-
latency applications.

Table 5: Comparison of inference speed of different models as
well as their floating point operations per second (FLOPS). The
inference time is tested on a Raspberry Pi 3 Model B.

Model Raspberry Pi (s) GFLOPS
GPV-F 2.258 1.847

CRNN3-C32 1.518 1.527
CRNN3-C16 0.698 0.383
CRNN3-C8 0.358 0.102

5. Conclusion
In this paper, we propose a teacher-student learning approach
to achieve two goals: 1) fill the performance gap on clean
and synthetic noise datasets between traditional VAD models
and GPVAD by incorporating frame-level supervision; 2) de-
velop a lightweight and online GPVAD framework by knowl-
edge distillation. Three lightweight GPVAD architectures are
proposed. Results indicate that teacher-student learning on the
same dataset significantly improves VAD performance. The
student dramatically surpasses the teacher on all test sets.
The largest student CRNN3-C32 achieves an absolute 16.14%,
4.18% and 7.25% event-F1 increase against the teacher on three
test sets, respectively. Meanwhile, the model size and computa-
tion cost of student models are significantly reduced by knowl-
edge distillation. There is almost no performance degradation
brought by model size decrease while the inference on a Rasp-
berry Pi becomes about five times faster. The smallest model
occupies only 76 kilobytes on disk, making it suitable for on-
line VAD application in the wild.
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