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Abstract
Captioning has attracted much attention in image and video un-
derstanding while a small amount of work examines audio cap-
tioning. This paper contributes a Mandarin-annotated dataset
for audio captioning within a car scene. A sentence-level loss
is proposed to be used in tandem with a GRU encoder-decoder
model to generate captions with higher semantic similarity to
human annotations. We evaluate the model on the newly-
proposed Car dataset, a previously published Mandarin Hos-
pital dataset and the Joint dataset, indicating its generalization
capability across different scenes. An improvement in all met-
rics can be observed, including classical natural language gen-
eration (NLG) metrics, sentence richness and human evalua-
tion ratings. However, though detailed audio captions can now
be automatically generated, human annotations still outperform
model captions on many aspects.
Index Terms: Audio Caption, Audio Caption Datasets,
Sentence-level Loss, Natural Language Generation

1. Introduction
Automatic captioning is a challenging task that involves joint
learning of different modalities. For example, image caption-
ing requires extracting features from an image and combining
them with a language model to generate reasonable sentences
to describe the image. Similarly, video captioning learns fea-
tures from a temporal sequence of images as well as audio to
generate captions. However, since audio captioning is a rela-
tively new field, it does not attract much attention like image-
and video captioning.

One well-known task within audio processing, which is
commonly associated with audio captioning, is Automatic
Speech Recognition (ASR). There are two main characteristics
of audio captioning compared with ASR: 1) audio captioning
focuses on all sound events in an audio while ASR only focuses
on speech (speech does not necessarily appear in the input to
an audio captioning model) 2) audio captioning is an automatic
summarization of the audio sound events while ASR directly
outputs transcriptions of human speech in the audio. A compar-
ison of the two tasks’ goals is shown in Figure 1.

Though the success of an audio captioning task in the recent
DCASE2020 challenge has prompted a plethora of novel ap-
proaches and papers [1, 2, 3, 4], limited attention is paid to audio
captioning within Chinese language processing. A Mandarin-
annotated 10 hour audio dataset within a hospital scene in
conjunction with a baseline encoder-decoder model to gener-
ate natural language captions has recently been published [5].

Mengyue Wu and Kai Yu are the corresponding authors. This work
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Audio	Captioning A	male	driver	is	talking	
to	a	female	passenger.

Automatic	Speech	Recognition "What's		your	destination?"	
"To	the	nearst	hospital"

Figure 1: Illustration of the difference between goals of ASR
and audio captioning.

Although the model performance evaluated by BLEU score
is particularly high, human evaluation tells a different story.
Most machine-generated Mandarin captions are monotonous
and repetitive, while by contrast human annotations are much
more specific in content and vivid in expression. Therefore, a
captioning model should endeavor to generate various sentences
that not only describe detailed audio content but also contain
richer vocabulary and diverse sentence structures. For example,
for a sound of a car crash in an audio clip, a well-performing
model is expected to generate a caption like “The car went into
a crash with others” or ”A traffic accident happened”, instead of
repetitive “There is a sound of a car crash” or even “There are
car sounds”.

To achieve the goal of generating specific captions with var-
ious expressions, we first publish a dataset on car scene with
five annotations per audio. Followed by that, we address the va-
riety lacking problem by incorporating an additional sentence-
level loss during training. Similar sequence-level loss has been
proved effective in previous work [6, 7]. The sentence-level
loss is based on context-aware sentence embeddings of diverse,
vivid human annotations. Since there is a supervision signal
from the overall sentence-level similarity with human annota-
tions, the model is expected to generate more diverse sentences
with similar meaning. In addition to classical natural language
generation (NLG) metrics, we also evaluate our model by out-
put richness, represented by the ratio between the number of
unique sentences and total predicted sentences. Human evalua-
tion is further performed to subjectively rate the output quality.
Finally, with the newly proposed dataset on car scene, we eval-
uate our model’s generalization capabilities.

2. Related Work
Audio Captioning Datasets To date, a few datasets including
Audiocaps [8] and Clotho [9] for audio captioning have been
published. Most of the current audio captioning datasets are
in English. The only existing Mandarin-annotated dataset is
the previously mentioned Hospital Scene dataset [5], a detailed
comparison with the proposed Car Scene dataset will be pro-
vided in Section 3.

Captioning Model Image and video captioning have wit-
nessed promising improvements recently. The development of
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Figure 2: Our proposed encoder-decoder model with sentence-level loss. Both the encoder and the decoder are single-layer GRUs.
The encoder outputs a fixed-sized audio embedding v from the T × D input feature F. Then the decoder predicts the sentence with
v as the input to the first timestep. In addition to the standard cross entropy loss between the prediction Ŝ and the ground truth S, we
propose a sentence-level loss, which is the dissimilarity between the prediction embedding eŜ and the ground truth embedding eS .

sequence-to-sequence models enables well-performing video
captioning models by simply using temporal image informa-
tion [10]. Later, the attention mechanism is utilized to fuse au-
dio with video information and assign different importance to
time frames [11, 12, 13]. Shen et al. [14] generates multiple
captions in different detail levels and temporal attention.

Sentence Embedding Early works like GloVe [15] and
Word2Vec [16] in natural language processing (NLP) focus
on context-free embedding of words. Recently, models like
Cove [17], ELMo [18] and GPT [19] make use of the self-
attention mechanism and transformers to build context-sensitive
word representations. An unsupervised, C-BOW-like method to
embed sentence to fixed-length vector [20] is later proposed. In
this paper, our work is based on the state-of-art sentence embed-
ding technique from BERT [21]. It contains large bidirectional
transformers trained on a huge corpus, thus embeddings ex-
tracted from the pretrained BERT model perform well in many
tasks.

Evaluation Metrics In previous captioning work, evalua-
tion metrics are mainly borrowed from NLG tasks like machine
translation and summarization: BLEU@1-4, METEOR, CIDEr
and ROUGE-L scores. Most of these metrics are based on
N-Gram overlaps between model predictions and human refer-
ences [22, 23, 11, 13]. In addition, more effective metrics have
also been explored. [24] and [25] treat image captioning as a
sentence ranking task and use recall@k and median@r as their
metric. Chuang et al. [13] embeds sentences to fixed length vec-
tors, based on which, a cosine similarity between model predic-
tions and human annotations is involved as a semantic evalua-
tion. Our sentence-level loss function is thus inspired to focus
on semantic similarity rather than individual wording choices.

3. An audio caption dataset in a car scene
This work publishes a 10 hours’ Mandarin-annotated dataset on
car scene that enables audio captioning. English translations us-
ing Baidu translator are also provided for broader accessibility.
The proposed Car dataset contains 3602 car-scene related audio
clips, each lasting for 10s. Each audio clip is annotated by five
native Mandarin speakers with a concise labeling method: only
natural sentence annotations are included while other metadata
are generated from the annotations, e.g., sound events, subjects,
etc.

Table 1: A comparison of existing audio captioning datasets.

Dataset Language Scene # Audios # Captions
AudioCaps English General 39,597 45,513

Clotho English General 4,981 24,905
Hospital Mandarin Specific 3,709 11,121

Car Mandarin Specific 3,602 18,010

This dataset exhibits a handful of discrepancies from the
previously published datasets (see Table 1): 1) We provide
scene-specific datasets for precise caption generation, in com-
parison with general purpose datasets like AudioCaps [8] and
Clotho [9]; 2) The proposed Car dataset includes large quanti-
ties of real-life recordings which are suitable for real applica-
tions while the Hospital dataset [5] consists of more video clips
from TV shows due to limited surveillance access in hospital.

Table 2: Most Frequent Sound Events.

Rank Sound Event # of events
1 Engine Sound 1442
2 Noise 872
3 Clicking Sound 812
4 Music 798
5 Speech 563

Table 2 shows the top 5 sound events of the proposed Car
dataset, indicating that the sound events are quite scene-specific.
The Car dataset is split into a development set and an evaluation
set, which encompasses 3241 and 361 audio clips respectively.
High sentence diversity is observed in both sets: only 6.7% an-
notations in the development set and 1.9% in the evaluation set
are repeated. From the distribution of the top 5 tokens in Table 3
it can be seen that the development-evaluation split exhibits a
similar token distribution.

4. Model Description
Since the previously utilized GRU encoder-decoder model [5]
can generate audio relevant and grammatically correct sen-
tences, we continue to incorporate a similar architecture with
certain modifications for further performance enhancement.
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Table 3: Token Distribution in the proposed Car dataset.

Rank Token Dev % Eval %
1 is/are在 6.01 6.01
2 driving行驶 5.37 5.55
3 automobile汽车 5.01 5.11
4 ’s的 4.01 4.58
5 driver司机 3.35 3.45

mean # of tokens 14.21 14.03

Our architecture consists of an audio embedder (encoder) and
a text generator (decoder).

Encoder For each audio clip, our GRU encoder reads a log
mel spectrogram (LMS) feature F and encodes it into a fixed-
length feature vector v.

Decoder The decoder takes the audio embedding v as its in-
put to generate natural language captions. However, our de-
coder network works differently during training and evaluation.
During training, when annotated captions are available, teacher
forcing is used to accelerate the training process. v is thus con-
catenated with the ground truth annotation embeddings as the
input to the decoder. Without annotation access during evalu-
ation, v is directly fed to the decoder. For every timestep, the
decoder generates a single token until the “<EOS>” (end of
sentence) token is generated (see Figure 2).

In this paper, we utilize two loss functions during train-
ing: 1) standard Cross Entropy (CE) loss 2) the newly proposed
sentence-level loss. Using a word and sentence loss combina-
tion, our model is expected to not only focus on wording se-
lection but also sentence-level semantic similarity, which even-
tually leads to captions with human-like content while being
diversified in sentence structure.

CE loss Standard cross entropy is used as the word-level
loss Equation (1), which is defined as the negative log likelihood
of the expected word St given the input audio feature F and the
model parameters θ at time t.

`CE(θ; S, F ) = −
T∑

t=1

log p(St|θ, F ) (1)

Sentence-level loss In addition to the standard CE loss at
word-level, we propose a novel sentence-level loss to capture
semantic similarity better. Since the decoder outputs a hidden
state (ht) at each timestep t, we first pool the hidden states of
all timesteps to get a single representation of the prediction. As
Equation (2) shows, we use mean pooling on all ht to obtain
the representation eŜ.

eŜ(θ, F ) =
1

T

T∑
t=1

ht(θ, F ) (2)

In order to minimize the embedding difference between eŜ
and annotated sentences (eS), we develop a sentence loss func-
tion opposed to cosine similarity (see Equation (3), where ε
is a small number ensuring numerical stability). In this way,
a small sentence loss indicates a high semantic similarity. In
cases where |eŜ| differs from |eS|, a linear transformation layer
is added after the mean pooling operation to ensure eŜ and eS

are of equal dimension.

`sentence(θ; eS, F ) = 1−
eS · eŜ(θ, F )

max(‖eS‖2 · ‖eŜ(θ, F )‖2, ε)
(3)

Accordingly, the training objective (Equation (4)) mini-
mizes the weighted sum of the word (Equation (1)) and sentence
(Equation (3)) loss, where α is a fixed hyperparameter.

`combined(θ; S, eS, F ) = `CE(θ; S, F )+α·`sentence(θ; eS, F ) (4)

5. Experiments
5.1. Datasets

We first validate our proposed Car dataset for its effectiveness
in audio captioning. To investigate the generalization capa-
bilities of our model and the proposed sentence-level loss, in
particular under cross-scene circumstances, we further exper-
iment on another two datasets. One is the Hospital dataset,
including 3709 audio clips with three human annotations for
each audio clip; the other is the creation of a Joint dataset that
merges the Car and Hospital datasets. It should be noted that
the Joint dataset is domain balanced since the number of audio
clips within the two datasets are similar (Car: 3602; Hospital:
3709).

5.2. Data preprocessing

Standard 64 dimensional LMS features from a 40 ms window
are extracted every 20 ms. During training we apply global
standardization (mean and variance) on each feature. Since the
annotations are in Mandarin Chinese, a language that does not
separate words by space in sentences, the annotations need to be
tokenized. Here, Stanford core NLP tools [26] are used for pars-
ing. We also use the public simplified and traditional Chinese
BERT model1 to obtain the fixed-length annotation embedding
eS for sentence-level loss training.

5.3. Training Details

Both the encoder and the decoder are composed of a single-
layer GRU with a hidden size of 512. The dimension of v is
256. BERT encodes S into a 768 dimensional eS.The develop-
ment set is further split into a training subset and a validation
subset with a ratio of 9 : 1. Training is done using the Adam
optimization algorithm [27] with an initial learning rate 4e−4,
batch size of 32 and default beta values given by the pytorch
framework [28]. α is set to 10 in combined loss training and the
model is trained for a fixed amount of 25 epochs. Following pre-
vious work on image caption [29], we calculate the CIDEr score
on the validation set after each epoch and choose the model with
the highest CIDEr score for evaluation.

5.4. Results

Results are analyzed from two aspects: 1) the model perfor-
mance evaluated by different metrics; 2) the model generaliza-
tion capabilities on different datasets.

5.4.1. Evaluation Metrics

The presentation of our results is split into 1) Objective metrics,
including BLEU@1-4, ROUGE and CIDEr; 2) Human Evalu-

1https://storage.googleapis.com/bert models/2018 11 03/chinese L-
12 H-768 A-12.zip

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 11,2022 at 04:06:26 UTC from IEEE Xplore.  Restrictions apply. 



Table 4: Results on the Car evaluation set. `CE and `combined cor-
respond to different loss functions (see Equation (1) and Equa-
tion (4)).

Metric Training loss
`CE `combined

BLEU1 0.720 0.706
BLEU2 0.549 0.553
BLEU3 0.415 0.433
BLEU4 0.322 0.348

ROUGEL 0.491 0.518
CIDEr 0.364 0.447

Richness 0.116 0.213

ation, involving eight native speakers’ ratings on machine- and
human-generated captions.

Objective Metrics Classical NLG evaluation metrics include
BLEU@1-4, ROUGEL, CIDEr, METEOR and SPICE. How-
ever, METEOR and SPICE depend on a paraphrasing library
named WordNet while there is no such library for Mandarin.
Therefore, we only present BLEU@1-4, ROUGEL and CIDEr
here. In addition to these scores, we also directly count the
unique caption number in all predictions, indicating the out-
put richness. Table 4 illustrates the objective results. Ex-
cept BLEU1, the model trained with `combined achieves a perfor-
mance improvement on all evaluation metrics compared with
`CE trained model. The most significant improvement lies in
CIDEr, achieving a 22.8% relative gain. The improvement in
objective metrics indicates that sentence-level loss is helpful in
training the model to output content-correlated sentences. In
addition, richness of the model predictions also increases from
0.116 to 0.213. Sentences generated by `combined trained model
may have similar semantic meanings but are diverse in expres-
sion.
An example is provided here:

Human Annotation: When the car is moving, a man is
talking with music on the car and the sound of braking.

CE Loss Prediction: When the car is moving, the male
driver is talking with the female passenger accompanied by the
engine sound.

Combined Loss Prediction: The car is moving with music
playing. The male driver is talking and suddenly the car hits
another one.

Human Evaluation Eight native Mandarin speakers are in-
vited to evaluate the model predictions. We randomly pick five
audios for evaluation. Human annotations, `CE predictions and
`combined predictions are evaluated. Raters score each caption
on a five-point scale, where 1 stands for the least and 5 sig-
nifies the most useful. Results show that human annotations
averaged 4.05, followed by `combined (scored 3.63), with `CE pre-
dictions being the least useful (scored 3.18). Although `combined

predictions show significant advantage against `CE predictions
in terms of human evaluation scores, there is still a gap between
our model predictions and human annotations. Examples are
provided at the end of this section.

5.4.2. Generalization

In order to verify the generalization capabilities of our model
and the combined loss function, we train the model on the other

two datasets: Hospital dataset and Joint dataset. Results evalu-
ated by different metrics can be seen in Table 5. The advantage
in description accuracy and diversity are verified. Firstly, the
GRU encoder-decoder model with our proposed sentence-level
loss can be generalized to other datasets. There is an improve-
ment on all metrics for both datasets, comparing `combined with
the `CE baseline. Specifically, for the Joint dataset, annotations
on different scenes are mixed while the improvement is still sig-
nificant, indicating that the proposed sentence-level loss is not
only effective on a specific scene. Secondly, the current model
is capable of generating richer sentences. On both datasets,
there is an about 30% relative increase in richness compared
with the baseline model trained with only CE loss.

Table 5: Results on Hospital and Joint datasets, trained by dif-
ferent loss functions.

Datasets Hospital Joint
Training loss `CE `combined `CE `combined

Metric

BLEU1 0.526 0.543 0.614 0.614
BLEU2 0.430 0.432 0.235 0.243
BLEU3 0.205 0.229 0.311 0.317
BLEU4 0.144 0.166 0.235 0.243

ROUGEL 0.389 0.392 0.429 0.442
CIDEr 0.326 0.366 0.435 0.512

Richness 0.429 0.566 0.347 0.437

Hyp Score 5: Accurate, comprehensive and vivid description
Hyp: 汽车在行驶中男司机在和女乘客聊天伴随着发动机声
The male driver is chatting with the female passenger while the car is moving.
Ref 1: 行车过程中司机和后排乘客说话
The driver and the passenger on the back are talking during driving. (Score 4)
Ref 2: 车在行驶中男司机找女乘客搭讪女乘客小声应答
The driver strikes up a conversation with a female passenger while the car is
moving. (Score 5)

Hyp Score 3: Generally correct, with some missing or redundant description
Hyp: 汽车停在路边男司机在介绍汽车
The car parks at the roadside and the male driver is introducing the car.
Ref 1: 汽车停靠在马路边司机讲解汽车性能有风噪声
The car parks at the roadside. The driver introduces the car performance along
with wind noise. (Score 4)
Ref 2: 汽车停在路边男司机对女乘客讲解相关内容有车噪声
The car parks at the roadside. The male driver introduces it to the female
passengers along with car noise. (Score 5)

Hyp Score 1 Not suitable at all
Hyp: 汽车在行驶中男司机和女乘客在聊天
The male driver and the female passenger are chatting while the car is driving
Ref 1: 车辆在高速行驶车里在放音乐
The car is running fast with music playing. (Score 3)
Ref 2: 汽车行驶中车内放着音乐外面传来物体落在车上的声音汽车停住了
When the car is running with music in it, there is sound outside the car. Then the
car stops. (Score 5)

6. Conclusion
In this paper, we propose a 10 hour long Car scene corpus. Fur-
ther, a sentence-level loss to provide a supervision signal from
the sentence semantics is proposed. Metrics including classi-
cal NLG metrics and output richness show that our approach
now generates more content-related captions with higher diver-
sity. Human evaluation results also validate the advantage of
the added sentence-level loss. Validation of the proposed ap-
proach is done on three Mandarin audiocaption datasets (Hos-
pital, Car, Joint), verifying its generalization capability. Despite
the effectiveness of our proposed GRU encoder-decoder model
with a sentence-level loss, there is still a significant gap between
model predictions and human annotations.
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